• Title/Summary/Keyword: Transmit Power

Search Result 969, Processing Time 0.029 seconds

Transmit Power and MMSE Receiver Filter Algorithm for Multi Access Points (다중 엑세스 포인트에서 전송전력과 MMSE 수신필터 알고리즘)

  • Oh, Changyoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.3
    • /
    • pp.111-118
    • /
    • 2020
  • We investigate the optimization problem of transmit power control and MMSE Receiver filter for multi access points environment. Previous work showed that increasing the number of access points decreases the transmit power consumption. Accordingly, transmit power control algorithm was developed in such a way that the transmit power is minimized, while each terminal meets Signal to Interference and Noise Ratio Requirement. In this work, we further reduce the transmit power consumption by optimizing the transmit power level and the MMSE receiver filter together. We showed that the proposed joint optimization algorithm satisfies the necessary and sufficient conditions to be standard interference function, which guarantees convergence and minimum transmit power consumption. We observed that the proposed algorithm outperforms the algorithm which only optimizes the transmit power.

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

Transmit Antenna Selection for Quadrature Spatial Modulation Systems with Power Allocation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.98-108
    • /
    • 2020
  • We consider transmit antenna selection combined with power allocation for quadrature spatial modulation (QSM) systems to improve the error rate performance. The Euclidean distance-based joint optimization criterion is presented for transmit antenna selection and power allocation in QSM. It requires an exhaustive search and thus high computational complexity. Thus its reduced-complexity algorithm is proposed with a strategy of decoupling, which is employed to successively find transmit antennas and power allocation factors. First, transmit antennas are selected without considering power allocation. After selecting transmit antennas, power allocation factors are determined. Simulation results demonstrate considerable performance gains with lower complexity for transmit antenna selected QSM systems with power allocation, which can be achieved with limited rate feedback.

D2D Power Control in the Cellular System: Non Cooperative Game Theoretic Approach

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2018
  • In this paper, we consider the game theoretic approach to investigate the transmit power optimization problem where D2D users share the uplink of the cellular system. Especially, we formulate the transmit power optimization problem as a non cooperative power control game. In the user wide sense, each user may try to select its transmit power level so as to maximize its utility in a selfish way. In the system wide, the transmit power levels of all users eventually converge to the unique point, called Nash Equilibrium. We first formulate the transmit power optimization problem as a non cooperative power control game. Next, we examine the existence of Nash Equilibrium. Finally, we present the numerical example that shows the convergence to the unique transmit power level.

Study on the Transmit Power, MMSE Receiver Filter, and Access Point Selection Optimization Algorithm

  • Oh, Changyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.65-72
    • /
    • 2021
  • We consider the joint optimization problem of transmit power level, MMSE receiver filter and access point(AP) selection for multi access points environment. In the previous work, transmit power and MMSE receiver filter were jointly optimized[1] and transmit power and best access point were optimized jointly[2]. For each case, the algorithm was proposed and its convergence which guarantees the minimum total transmit power was proved. In this paper, we further improve the algorithm by jointly optimizing three parameters. More specifically, 1) we propose the algorithm by considering transmit power, MMSE receiver filter and access point selection jointly. 2) we prove that the proposed algorithm guarantees convergence with minimum transmit power consumption. In the simulation results, it is shown that proposed algorithm outperforms two other algorithms, i.e., 1) algorithm with transmit power and MMSE receiver filter, and 2) algorithm with transmit power and best access point selection.

Transmit Power Control for Multi-Access Points Environment (다수 개의 엑세스 포인트 환경에서 전송전력 제어)

  • Oh, Changyoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.49-56
    • /
    • 2020
  • We investigate the transmit power control algorithm for multi-access points environment. Each terminal may transmit a signal to one of these access points. Each access point may receive a signal from desired terminals as well as interference from neighbor terminals. In this paper, a transmit power control algorithm is developed such that the total transmit power is minimized, while each terminal meets the target signal to interference ratio (SIR) requirement. In particular, the effect of increasing the number of access-points on the total transmit power consumption is analyzed. Based on this analysis, we propose a convergence guaranteed power control algorithm. We prove that the proposed iterative algorithm always converges to the target SIR. In addition, we show that the proposed algorithm optimizes the transmit power level. Simulation results show that the proposed algorithm guarantees convergence regardless of the number of access points. We also observed that increasing the number of access points reduces the total transmit power consumption.

On the Outage Behavior of Interference Temperature Limited CR-MISO Channel

  • Kong, Hyung-Yun;Asaduzzaman, Asaduzzaman
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.456-462
    • /
    • 2011
  • This paper investigates the outage behavior of peak interference power limited cognitive radio (CR) networks with multiple transmit antennas. In CR-multi-input single-output (MISO) channel, the total transmit power is distributed over the transmitantennas. First, we use the orthogonal space-time codes (STC) to achieve the transmit diversity at CR-receiver (rx) and investigate the effect of the power distribution on the interference power received at the primary-receiver (P-rx). Then, we investigate the transmit antenna selection (TAS) scheme in which the CR system selects the best transmit antenna and allocates all the power to the selected best antenna. Two transmit antenna selection strategies are proposed depending on if feedback channel is available or not. We derive the closed form expressions of outage probability and outage capacity of all schemes with arbitrary number of transmit-antennas. We show that the proposed schemes significantly improve the outage capacity over the single antenna systems in Rayleigh fading environment. We also show that TAS based scheme outperforms the STC based scheme when peak interference power constraint is imposed on the P-rx only if a feedback channel from CR-rx to CR-transmitter is available.

On the Optimal Antenna Weighting Method for Closed-Loop Transmit Antenna Diversity with Average and Peak Power Constraints (평균전력과 첨두전력 제한이 있는 폐루프 송신 안테나 다이버스티 시스템에서의 최적 안테나 가중치 방식 연구)

  • Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.694-699
    • /
    • 2007
  • We consider an optimal antenna weighting scheme for a closed-loop transmit antenna diversity system in Rayleigh fading channels. We derive a closed-form expression for the optimal transmitter weights that minimize the average bit error rate (BER) subject to fixed average and peak transmit power constraints. It is shown that the peak power limitation degrades the average BER performance more significantly as the available average power and/or the number of transmit antennas increase.

A Design of Sensor Framework for Low-Power Transmission in the WSN Environment based on WPAN (WPAN 기반의 WSN 환경에서 저전력 송신을 위한 센서 프레임워크 설계)

  • Kim, Yong-Tae;Jeong, Yoon-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.339-346
    • /
    • 2011
  • In the existing RF communication based WPAN environment, a lowering of battery span and interference problem among sensors occur because the value of output is set and transmitted steadily when the system on sensor is initialized. Therefore, this paper proposes a framework and a transmit method with low power which decreases the electricity consumption by properly controling transmit power of opponent by received signal strength indicator(RSSI) of each sensor. The system proposes a power-lowering method by controling transmit power properly by the transmit intensity of the connected sensor after being affected by the transmit intensity of surrounded sensor. The framework that is proposed in this paper includes data transmit module, transmit power manager module, transmit power searching module, signal transmit module, and signal receiving module.

Transmit Power and Access Point Selection Algorithm: TA Link and AT Link (전송전력과 엑세스 포인트 선정 알고리즘: AT 링크와 TA 링크)

  • Oh, Changyoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1022-1029
    • /
    • 2020
  • We investigate the joint selection problem of the transmit power level and the best access point for multi-access points. We further reduce the transmit power by jointly optimizing the transmit power and the access point selection. Our aim is to minimize the total transmit power, while each terminal maintains minimum signal to interference ratio requirement. We observe that the optimum solution can be achieved through proposed iterative algorithm for both TA link and AT link. Simulation results show that proposed algorithm (joint optimization of transmit power level and access point) outperforms the algorithm which optimizes the transmit power only. We also observe that the duality between the TA link and AT link does not hold in multi-access points environment. Accordingly, the resulting power vectors and the access point vectors for TA link and AT link are different in general.