• Title/Summary/Keyword: Transport Zone

Search Result 407, Processing Time 0.027 seconds

A Study on Beach Profile Change in the Consideration of Undertow (Undertow를 고려한 해빈단면지형 변화에 관한 연구)

  • 손창배;김창제
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.147-154
    • /
    • 1999
  • A Numerical model is developed in order to predict cross-shore beach profile change. In this model it is assumed that sediment transport is generated by waves(bed load transport suspended load transport) and undertow which is defined as offshore directional steady flow in the surf zone. In addition wave tank experiments which reproduce storm-surge were performed. By comparing resulting profile of calculation with experiments, the applicability of this method is verified.

  • PDF

A Study on the Expansion of Low Emission Zone in Green Transport Zone and Seoul Metropolitan Government Using Origin-Destination Traffic Volume (O/D 데이터를 활용한 녹색교통지역 및 서울시 자동차 운행제한 확대 연구)

  • Jeong, Jae Eun;Shon, Eui Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.90-99
    • /
    • 2020
  • The "Low Emission Zone" (LEZ) system restricts entry of vehicles with high air pollutants into city centers. Implementation of the system improves air environment around the world. Since 2012, operating restrictions have been applied to all of Seoul's metropolitan areas and some other metropolitan areas in the state. Beginning in December 2019, entry of 5th class vehicles to the central green transport zone of Seoul has been restricted. In this study we examine the status of operational restrictions in this zone, and predict the amount of traffic reduction expected when numbers of target vehicles are expanded in the future, we use data for each vehicle's emission grade: by region and 'Origin-Destination Traffic Volume'. After estimating the amount of traffic entering Seoul's 25 autonomous districts, by emission class, we propose a target region that may have a significant effect if target areas for automobile operation restrictions expand in the future.

Numerical analysis of deposition and channel change in the vegetation zone (식생대에서 유사의 퇴적과 하도변화 수치모의 분석)

  • Hwang, Hyo;Jang, Chang-Lae;Kang, Minseok
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.23-34
    • /
    • 2023
  • This study analyzed the bed load transport and channel change on the vegetation zone through laboratory experiments and numerical simulations. To examine the effect of vegetation zone in the laboratory experiment, artificial vegetation zones made of acrylic sticks were installed in the experimental channel, and discharge conditions were adjusted to examine the bed load transport and channel change in the vegetation zone. Next, numerical simulations were performed by applying the same conditions as those of the laboratory experiment to the Nays2D model, a two-dimensional numerical model, and the applicability of the numerical model was examined by comparing the results with the results of the laboratory experiment. Finally, by applying a numerical model, the bed load transport and channel change according to the change in vegetation density were examined. As a result of examining the bed load transport and channel change in the vegetation zone according to the discharge condition change by applying the laboratory experiment and the numerical model, the results of the two application methods were similar. As the discharge increased, bed load from the upper stream was deposited inside the vegetation zone. On the other hand, on the other side of the vegetation zone, the flow was concentrated and erosion occurred. Also, the range of erosion increased in the downstream direction. As a result of examining the bed load transport and channel change according to the change in vegetation density, as the vegetation density increased, the bed load from the upper stream was deposited inside the vegetation zone. On the other hand, due to the increase in vegetation density, the flow was concentrated to the opposite side of the vegetation zone, erosion occurred.

Prediction of Tidal Changes and Contaminant Transport Due to the Development of Incheon Coastal Zone (인천해역 개발에 따른 조석변화 및 오염물질 운송 예측)

  • Jeong, Shin-Taek;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A horizontal 2-D model which includes the wetting-drying treatment technique in the intertidal zone is established for the prediction of tidal changes and contaminant transport due to the development of Incheon coastal zone. The flow model is verified by the measurement data at Jeong-Do, and then the computed values are closely matched to the observed water elevations and velocities of main-flow direction. And then, the tidal change patterns are simulated using this model before and after the construction of the Youngjongdo New Airport and Shihwa Seadike. In the spring tide condition, pollutants transport pattern is also simulated for the arbitrary pollutants loads. By the analysis of this numerical simulation results, the velocities after development are decreased, and discharged pollutants are mainly transported by the advection along a narrow deep trough. Thus, this model can be used as the compatible prediction model for the tidal change and pollutant transport due to the development plan of Incheon coastal zone.

  • PDF

First-Order Mass Transfer in a Vortex-Dispersion Zone of an Axisymmetric Groove: Laboratory and Numerical Experiments

  • Kim, Young-Woo;Kang, Ki-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.651-657
    • /
    • 2010
  • Solute transport through a groove is affected by its vortices. Our laboratory and numerical experiments of dye transport through a single axisymmetric groove reveal evidence of enhanced spreading and mixing by the vortex, i.e., a new kind of dispersion called here the vortex dispersion. The uptake and release of contaminants by vortices in porous media is affected by the flow Reynolds number. The larger the flow Reynolds number, the larger is the vortex dispersion, and the larger is the mass-transfer rate between the mobile zone and the vortex. The long known dependence of the mass-transfer rate between the mobile and "immobile" zones in porous media on flow velocity can be explained by the presence of vortices in the "immobile" zone and their uptake and release of contaminants.

Effect of Water Content on the Transport of Gemini Surfactant and Hydrophobic Organic Compounds (수분함량이 쌍둥이형 계면활성제 및 소수성 유기오염물질의 거동에 미치는 영향에 관한 연구)

  • Park, In-Sun;Park, Jae-Woo;Cho, Jong-Soo;Hwang, In-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 2003
  • An immobilization zone can be constructed by modifying soils in the vadose zone with surfactants, which can be used to promote retardation of organic contaminants in the subsurface. Column experiments were conducted to investigate the behavior of surfactants and organic contaminants in unsaturated and saturated conditions with different water contents (25%, 50%, 75%, 100%). Transport and sorption of surfactant (dialkylated disulfonated diphenyl oxide) in the columns containing aluminum oxide was similar under the conditions at different water contents. However, transport of a model organic compound (naphthalene) was retarded as the water content decreased by enhanced partitioning of the compound into the surfactants that were sorbed on the aluminum oxide. This suggests that the immobilization method could well be applied to vadose zone as well as to saturated zone.

  • PDF

PRELIMINARY MODELING FOR SOLUTE TRANSPORT IN A FRACTURED ZONE AT THE KOREA UNDERGROUND RESEARCH TUNNEL (KURT)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Jeong, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.79-88
    • /
    • 2012
  • Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.