• Title/Summary/Keyword: Trapezoidal fin

Search Result 34, Processing Time 0.027 seconds

Comparison of Performance between Symmetric Trapezoidal Fins and Asymmetric Trapezoidal Fins (대칭 사다리꼴 핀과 비대칭 사다리꼴 핀의 성능 비교)

  • Kang, Hyungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2016
  • Heat loss and fin efficiency of symmetric and asymmetric trapezoidal fins with variable slope of fin's top surface are obtained by using a two-dimensional analytic method. Shapes of symmetric and asymmetric fins are changed from rectangular through trapezoidal to triangular by adjusting the fin shape factor. The ratio of symmetric trapezoidal fin length to asymmetric trapezoidal fin length is presented as a function of fin base height and convection characteristic number. The ratio of symmetric trapezoidal fin efficiency to asymmetric trapezoidal fin efficiency is presented as a function of the fin base height and fin shape factor. One of results shows that asymmetric trapezoidal fin length is shorter than symmetric trapezoidal fin length (i.e., asymmetric trapezoidal fin volume is smaller than symmetric trapezoidal fin volume) for the same heat loss when the fin base height and fin shape factor are the same.

Trapezoidal Fin : Comparison of Heat Loss with Rectangular Fin and the Effect of Slope Factor on the Heat Loss (사다리꼴 fin: 사각 fin과의 열손실 비교와 열손실에 미치는 경사요소의 효과)

  • Kang, Hyung-Suk;Youn, Sea-Chang
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.33-40
    • /
    • 2001
  • Heat loss from the trapezoidal fins haying different upper side slope and that from a rectangular fin are investigated by the three dimensional analytic method. It is shown that the trapezoidal fins having different upper side slope become an approximate rectangular fin by inst adjusting the slope factor. The comparison of the heat loss between a rectangular fin and an approximate rectangular fin is represented as a function of the non-dimensional fin length, fin width and Biot number to make sure that the analysis on the trapezoidal fins having different upper side slope is countable. One of the results is that the relative value of heat loss between a rectangular fin and an approximate rectangular fin is less than 1.5% for given ranges of non-dimensional length and width in case of Bi = 0.1.

  • PDF

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.

ANALYSIS OF A REVERSED TRAPEZOIDAL FIN USING A 2-D ANALYTIC METHOD

  • Kang, H.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.151-161
    • /
    • 2010
  • A reversed trapezoidal fin is analyzed using a two-dimensional analytical method. Heat loss from the reversed trapezoidal fin is presented as a function of the fin shape factor, fin base thickness and the fin base height. The relationship between the fin tip length and the convection characteristic number as well as that between the fin tip length and the fin base height for equal amounts of heat loss are analyzed. Also the relationship between the fin base thickness and the fin shape factor for equal amount of heat loss is presented. One of the results shows that the heat loss decreases linearly with the increase of the fin shape factor.

Performance Analysis of a Geometrically Asymmetric Trapezoidal Fin for an Enhanced Heat Exchanger (향상된 열교환기를 위한 기하학적 비대칭 사다리꼴 핀의 성능 해석)

  • Song, Nyeon-Joo;Kang, Hyung-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Performance of the asymmetric trapezoidal fin with various upper lateral surface slopes is investigated by using the two-dimensional analytic method. For a fin base boundary condition, convection from the inner fluid to the inner wall, conduction from the inner wall to the fin base and conduction through the fin base are considered. Heat loss and fin efficiency are represented as a function of the fin base thickness, base height, inner fluid convection characteristic number, fin tip length and fin shape factor. One of the results shows that heat loss increases while fin efficiency decreases as the fin shape factor increases.

Optimization of a Reversed Trapezoidal Fin (역 사다리꼴 핀의 최적화)

  • Kang Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.987-995
    • /
    • 2006
  • A reversed trapezoidal fin with the fluid in the inside wall is analyzed and optimized in this study. As a fin base boundary condition, the heat transfer from inside wall fluid to the fin base is considered. The values of fin base temperature with the variations of inside wall fluid convection characteristic number and fin base length are listed. The heat transfer, fin effectiveness, fin length and fin base height are optimized as a function of fin base length, convection characteristic number ratio, fin shape factor and fin volume.

Optimization of Convective Trapezoidal Profile Fin having Fluid inside the Wall (내벽에 유체가 있는 대류 사다리꼴 형상 Fin의 최적화)

  • Jeong Byung-Cheol;Lee Sung-Joo;Yoon Sea-Chang;Kang Hyung Suk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.95-102
    • /
    • 2006
  • This study analyzes and optimizes a design for a trapezoidal profile straight fin using one-dimensional analytical method. The heat transfer, fin length and fin height are optimized as a function of fin volume, fin shape factor and fin base length. In this optimization, convection characteristic number over fin surface and that of fluid inside fin wall are considered. One of the results shows that the maximum heat loss increases as fin volume increases and both fin shape factor and fin base length decrease.

Comparison Between Analytic Method and Experimentation on the Trapezoidal Fin (사다리꼴 핀에 대한 해석적 방법과 실험의 비교)

  • Cho, Chul-Hyun;Han, Young-Min;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.75-80
    • /
    • 2005
  • A trapezoidal fin is analyzed by using one-dimensional analytic method. For two boundary conditions, the heat transfer rate is given instead of specified temperature at the fin base and heat conduction into the fin tip is equal to heat convection from the tip. Temperatures at three different points within the trapezoidal fin are measured by using experimental apparatus. A comparison of the temperature between one-dimensional analytic method and experimentation is made as a function of dimensionless fin length under both free convection and forced convection conditions. The ratio of heat loss from the fin tip surface to that through the fin base is presented as a function of dimensionless fin length and Biot number. One of results shows that the relative error increases as the air velocity increases for forced convection conditions.

  • PDF

Analysis of heat exchanger in the drying system using solar collector with evacuated tubes (진공관형 태양열 집열기를 이용한 건조장치의 열교환기 해석)

  • Kang, Hyung-Suk;Han, Young-Min;Lee, Gwi-Hyun;Lee, Sung-Joo;Yoon, Sae-Chang
    • New & Renewable Energy
    • /
    • v.2 no.1 s.5
    • /
    • pp.46-55
    • /
    • 2006
  • The performance enhancement of heat exchanger in the drying system using solar collector with evacuated tubes is analyzed. First, for this analysis, the heat loss from a reversed trapezoidal fin attached at the pipe is calculated as a function of convection characteristic number ratio, fin base length and fin tip length. Also, the optimum heat loss and fin tip length of the fin under certain conditions are presented. The overall surface effectiveness of the cylinder with reversed trapezoidal fins in the heat exchanger are shown as a function of half fin base height, fin lateral slope and fin tip length.

  • PDF

Optimum Performance and Design of a Trapezoidal Fin (사다리꼴 핀의 최적 성능과 설계)

  • Kang, Hyung-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.82-85
    • /
    • 2006
  • A trapezoidal fin with various lateral surface slopes is designed optimally by using one-dimensional analytic method. For four different convection characteristic numbers, the trend of heat loss as a function of fin tip length is shown. The optimum heat loss is somewhat arbitrarily chosen as 92% of the maximum heat loss. The optimum fin length corresponding to this optimum heat loss versus convection characteristic number is presented. The optimum effectiveness and specific effectiveness is presented as a function fin shape factor.

  • PDF