• Title/Summary/Keyword: Tricin

Search Result 26, Processing Time 0.034 seconds

Optimum Extraction of Tricin and Tricin 4'-O-(threo-β-guaiacylglyceryl) Ether (TTGE) from Rice Hull (Oryza sativa L.) (왕겨에서 Tricin과 Tricin 4'-O-(threo-β-guaiacylglyceryl) Ether(TTGE) 추출 조건의 최적화)

  • Yoon, Nara;Lee, Sang Hoon;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1923-1926
    • /
    • 2015
  • This study was conducted to evaluate the effects of extraction conditions on tricin and tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) extracted from rice hull (Oryza sativa L.). Extraction conditions were an ethanol concentration of extraction solvent of 50~90%, extraction time of 0.5~48 h, and ultrasonic-assisted and agitated extraction as extraction methods. The total tricin and TTGE contents of rice hull were $82.20{\mu}g/g$ and $53.12{\mu}g/g$, respectively. Recovery of tricin and TTGE increased to 76.11% and 71.42% with increasing ethanol concentration until 70% and then decreased above 80%, respectively. In ultrasonic-assisted extraction, highest recovery of tricin was 83.30% after 2 h of extraction and TTGE was 71.80% after 1 h of extraction. In agitated extraction, highest recovery of tricin was 92.34% after 48 h and TTGE was 76.89% after 24 h of extraction. Therefore, optimum extraction conditions for tricin and TTGE of rice hull were 70% ethanol concentration and ultrasonic-assisted extraction for 1 h.

Isolation and Quantitative Analysis of Tricin from Ears of Phragmites communis (갈대이삭으로부터 Tricin의 분리 및 함량 분석)

  • Woo, Hyun Sim;Lee, Seung-Young;Hwang, Buyng Su;Jeong, Sang-Chul;Kim, Dae Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.1
    • /
    • pp.77-81
    • /
    • 2017
  • The aim of this study was to investigate a validation method for determination of tricin in Phragmites communis ears. Tricin was isolated with chromatographic methods and used as the standard substances for quantitative analysis. The structural determination was characterized by comparing their NMR spectral data with values reported in the literature. For validation, the specificity, linearity, precision, accuracy, detection limits, and quantification limits of tricin was measured by HPLC. The results show that the specificity was satisfied with retention time and diode array detector (DAD) spectrum by analysis of tricin using HPLC. The limits of detection (LOD) for tricin was 0.84 mg/ml. Recovery of tricin was 98.80~108.22% with R.S.D values less than 2%. Intra-day and inter-day precisions of tricin in P. communis ears were 99.96~100.96% and 99.01~100.40%, respectively. Therefore, application of tricin was validated by an analytical method as major compound in P. communis ears.

Tricin and Tricin 4'-O-(Threo-β-Guaiacylglyceryl) Ether Contents of Rice Hull (Oryza sativa L.) with Heat Treatment and Germination (열처리와 발아에 따른 왕겨(Oryza sativa L.)의 Tricin과 Tricin 4'-O-(Threo-β-Guaiacylglyceryl) Ether 함량)

  • Yoon, Nara;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Kim, Hyun Young;Lee, Junsoo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.696-701
    • /
    • 2016
  • This study was conducted to evaluate the effects of heat treatment and germination on tricin and tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) formation from rice hull (Oryza sativa L.). Heat treatments were conducted at $80{\sim}140^{\circ}C$ for 1~5 h. Germination periods were 1~6 days at $37^{\circ}C$. Germinated rough rice extracts were classified as non-filtrated, filtrated, and residue after filtration. For heat treatment, the highest contents of tricin and TTGE were 253.12 and $208.39{\mu}g/g$ at $130^{\circ}C$ after 1 h, respectively. For germination, the highest contents of tricin and TTGE in rice hull were 118.20 and $95.37{\mu}g/g$ after 2 days, respectively. In the germinated rough rice extract treatment, the highest contents of tricin and TTGE were 361.76 and $308.08{\mu}g/g$, respectively, in residue after filtration of germinated rice extract for 6 days. Therefore, the optimum conditions for tricin and TTGE formation were heat treatment at $130^{\circ}C$ for 1 h, germination for 2 days, and addition of residue after filtration of germinated rough rice extract for 6 days.

The Protective Effect of Zizania latifolia Extract against t-BHP-induced Oxidative Stress in HepG2 Cells (고장초 추출물의 t-BHP로 산화적 손상이 유도된 HepG2 세포 보호 효과)

  • Park, Se-Ho;Lee, Jae-Yeul;Yang, Seun-Ah;Bang, Daesuk;Jhee, Kwang-Hwan
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.338-345
    • /
    • 2021
  • Zizania latifolia has long been used as a tea for both edible and medicinal purposes. However, research into the use of Z. latifolia as a high value-added edible material is lacking. In a previous study, we confirmed that tricin is the major component in Z. latifolia. In this study, we investigated the protective effect of a Z. latifolia extract (ZLE). Toxicity tests of ZLE or tricin on HepG2 cells revealed no toxicity due to ZLE or tricin at all concentrations used. The reduction in cell viability by tert-butyl hydroperoxide (t-BHP) was suppressed by treatment with ZLE or tricin. In addition, ZLE or tricin effectively inhibited the production of reactive oxygen species (generation of hydrogen peroxide, alkoxy free radicals, and peroxyl free radicals by t-BHP) and oxidative damage. ZLE or tricin treatments also increased the protein expression of superoxide dismutase 1 (SOD1), catalase, heme oxygenase-1 (HO-1), and nuclear factor erythroid-related factor 2 (Nrf2), which are known as antioxidant enzymes, suggesting that the protective effect of ZLE is related to activation of tricin. Taken together, the results indicate that Z. latifolia can be developed as a functional food material for improving liver function.

The flavone glycosides of Sasa borealis (조릿대잎의 flavone 배당체 성분)

  • Yoon, Ki-Dong;Kim, Chul-Young;Huh, Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.2
    • /
    • pp.224-227
    • /
    • 2000
  • As part of study of the constituents of bamboo grasses, the leaves of Sasa borealis (Hackel) Makino (Gramineae) were examined. Friedelin, glutinol, isoorientin and isovitexin have been reported as constituents of bamboo grasses. In this study, tricin and two flavone glycosides, tricin $7-O-{\beta}-D-glucopyranoside$ and luteolin $6-C-{\alpha}-L-arabinopyranoside$ have been isolated from EtOAc extract of S. borealis, by consecutive silica gel, Sephadex LH-20 column chromatography and a repetitive HPLC. The structures of these compounds were determined by IR, $^1H-NMR,\;^{13}C-NMR,\;^{13}C-^1H\;COSY,\;^1H-^1H\;COSY,\;HMBC$ and Mass spectral data.

  • PDF

Reverse-Phase HPLC Method for Identification of Diastereomeric Constituents from Sasa borealis (Sasa borealis의 Diastereomeric 성분들의 역상 고속액체크로마토그래프 분석방법)

  • Jeong Yeon Hee;Lee Jun;Kwon Youngjoo;Seo Eun-Hyoung
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Reiterated normal-phase column chromatography lead to the isolation and purification of six known compounds but for the first time from the whole plant of Sasa borealis (Hack.) Makino (Gramineae): tricin 4'-O-(erythro-${\beta}$-guaia-cylglyceryl) ether (1), tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether (2), tricin 4'-O-[erythro-${\beta}$-guaiacyl-(9'-O-acetyl)-glyceryl] ether (3), tricin 4'-O-[threo-${\beta}$-guaiacyl-(9'-O-acetyl)-glyceryl] ether (4), (-)-pinoresinol (5), and vanillin (6). The structures of the compounds (1-6) were established based on interpretation of high resolution NMR (COSY, HSQC, HMBC, and NOESY) spectral data. In particular, compounds 1 and 3 were diastereomers of compounds 2 and 4, respectively. These two sets of diastereomers were able to be simultaneously identified and quantified by a gradient reversed-phase HPLC method with UV photodiode array, This sensitive HPLC method is noteworthy as a simultaneous separation and identification method to test the extract of the family Gramineae which contains these compounds.

Preparation and Characterization of Phytochemical-Rich Extract from Sasa quelpaertensis Leaf (식물화합물 다량 함유 제주조릿대 잎 추출물의 제조와 특성)

  • Lee, Ju Yeop;Ko, Hee Chul;Jang, Mi Gyeong;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1330-1335
    • /
    • 2016
  • Sasa species leaves have been used in traditional medicine for their anti-inflammatory, antipyretic, and diuretic properties. Sasa quelpaertensis Nakai is a small bamboo grass that grows only on Mt. Halla on Jeju Island, Republic of Korea. This small bamboo grass has recently been the focus of much attention due to its potential biomass as well as its beneficial health effects. In this study, to promote the efficient utilization of the S. quelpaertensis leaf, we established a simple preparation method for phytochemical-rich extract (PRE) by comparing phytochemical contents and biological activities according to extraction methods. high performance liquid chromatography (HPLC) analysis revealed that the contents of two major phytochemicals such as, tricin (5.35 mg/g) and p-coumaric acid (44.10 mg/g) contained in PRE were higher than those in fresh hot water extract (SQH, p-coumaric 23.39 mg/g, tricin 0.18 mg/g) and ethanol extract (SQE, p-coumaric 10.8 mg/g, tricin 0.38 mg/g). The antioxidant activities [1,1-diphenyl-2-picrylhydrazy (DPPH) radical scavenging activity, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging activity, nitric oxide (NO) scavenging activity, and xanthine oxidase inhibitory activity] of PRE were higher than those of SQH and SQE. PRE effectively inhibited NO production in LSP- stimulation RAW 264.7 cells, and the growth of human promyelocytic leukemia (HL-60) cells. These results suggest that PRE has a potential as a promising antioxidant and anti-inflammatory agent.

Comparative study of antioxidant and anti-neuroinflammatory activity of leaf extracts of three different species of Bamboos in different extraction solvents containing caffeic acid, p-coumaric acid and tricin (왕대, 조릿대, 오죽의 추출 용매에 따른 항산화, 신경염증제어 활성 및 지표성분 caffeic acid, p-coumaric acid, tricin의 함량 비교)

  • Kim, Yon-Suk;Cho, Duk-Yeon;Kim, Mikyung;Choi, Dong-Kug
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.296-303
    • /
    • 2021
  • The antioxidant and anti-neuroinflammatory activities of water, 30, 70, and 100% ethanol extracts of leaves of three different species of bamboo (Phyllostachys nigra, P. bambusoides, and Sasa borealis) were investigated. The levels of total polyphenol and flavonoid were measured, and antioxidant activity was evaluated using various antioxidant assays (DPPH, ABTS, and FRAP). Lipopolysaccharide (LPS)-induced BV2 microglial cell activation was used to evaluate the anti-neuroinflammatory properties of the bamboo leaf extracts. Treatment with both aqueous and ethanolic extracts showed no cytotoxicity in BV-2 microglial cells. Pre-treatment of BV-2 cells with bamboo leaf extracts significantly inhibited LPS-induced excessive production of nitric oxide in a dose-dependent manner. Moreover, phytochemical analysis based on the extraction solvent showed that caffeic acid, p-coumaric acid, and tricin are the principal constituents of all three bamboo leaf extracts. Therefore, our findings suggest that bamboo leaf extract contains potent antioxidants and anti-neuroinflammatory compounds that can be used as potential therapeutic agents for the treat neuroinflammatory diseases.

Isolation and identification of a tricin 4"-O-(threo-β-guaiacylglyceryl) ether producing microorganism from germinated rice (발아 벼로부터 tricin 4"-O-(threo-β-guaiacylglyceryl) ether 생성균주의 분리 및 동정)

  • Yoon, Nara;Jang, Gwi Yeong;Lee, Yoon Jeong;Li, Meishan;Kim, Min Young;Kim, Hyun Young;Lee, Junsoo;Jeong, Heon Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.361-365
    • /
    • 2016
  • This study was conducted to isolate and identify a microorganism that increases tricin-O-(threo-${\beta}$-guaiacylglyceryl) ether (TTGE) content in the hulls of rice (Oryza sativa L.). Bacteria from germinated rice were isolated by enrichment cultivation using yeast mold, luria bertani, potato dextrose and mannitol egg york polymyxin broths. The highest increase in TTGE content ($339.30{\mu}g/g$) was achieved by a microorganism isolated by PDA enrichment cultivation. On the basis of 16S RNA sequence homology and phylogenetic analysis, the isolated bacterium was identified to have 100% similarity with Burkholderia vietnamiensis. The isolated bacteria were short rods, negative for the Gram stain, and positive for the catalase test. The highest TTGE level was $435.86{\mu}g/g$ in 72-h fermented samples, representing a 2.5x increase compared with the control ($175.65{\mu}g/g$). In conclusion, the bacterium isolated from germinated rice extract was Burkholderia vietnamiensis, and the optimum fermentation period to maximize TTGE levels was 72 h. These findings might help in developing functional materials using rice hulls, a waste product of rice milling.

Antioxidant Constituents from Setaria viridis

  • Kwon, Yong-Soo;Kim, Eun-Young;Kim, Won-Jun;Kim, Woo-Kyung;Kim, Chang-Min
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.300-305
    • /
    • 2002
  • The EtOAc and n-BuOH soluble fractions from the aerial part of Setaria viridis showed a strong free radical scavenging activity. Six major compounds were isolated from these fractions. They were identified by spectral data as tricin (1), p-hydroxycinnamic acid (2), vitexin 2"-Ο-xyloside (3), orientin 2"-Ο-xyloside (4), $tricin-7-Ο-{\beta}-D-glucoside$ (5) and vitexin 2"-Ο-glucoside (6). Among these compounds, 4 and 5 exhibited strong free radical scavenging activities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH). We further studied the effects of these isolated compounds on the lipid peroxidation in rat liver microsomes induced by non-enzymatic method. As expected, 4 and 5 exhibited significant inhibition on $ascorbic/Fe^{2-}$ induced lipid peroxidation in rat liver microsomes.ver microsomes.