• Title/Summary/Keyword: Trinity House

Search Result 2, Processing Time 0.019 seconds

Rayleigh′s Acoustical Research on the Fog Signal

  • Ku, Ja Hyon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.98-102
    • /
    • 2004
  • In 1896, Rayleigh was appointed as Scientific Advisor of the Trinity House. Rayleigh applied his knowledge of sound to developing effective fog signals during his IS-year tenure at the maritime organization. Rayleigh's expertise on acoustics met an appropriate field for its application during his improvement of the fog signal for the institution. Rayleigh's activities at the Trinity House were motivated by his desire to make contribution to the public. During his research on the fog signal, Rayleigh effectively employed his expertise acquired through his mathematical and experimental research on sound and vibration since the 1860s. Rayleigh developed effective horns for emitting fog signals and proposed various ways of overcoming the weaknesses of sound signals available at that time. While attempting to solve the problem of the attenuation of sound signals disseminating through the air, Rayleigh put foundations of atmospheric acoustics by developing new scientific theories about it.

Application of self-healing technique to fibre reinforced polymer wind turbine blade

  • Fifo, Omosola;Ryan, Kevin;Basu, Biswajit
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.593-606
    • /
    • 2015
  • This paper presents a novel concept of healing some of the damages in wind turbine blades (WTBs) such as cracks and delamination. This is achieved through an inherent functioning autonomous repairing system. Such wind turbine blades have the benefit of reduced maintenance cost and increased operational period. Previous techniques of developing autonomous healing systems uses hollow glass fibres (HGFs) to deliver repairing fluids to damaged sites. HGFs have been reported with some limitations like, failure to fracture, which undermines their further usage. The self-healing technique described in this paper represents an advancement in the engineering of the delivery mechanism of a self-healing system. It is analogous to the HGF system but without the HGFs, which are replaced by multiple hollow channels created within the composite, inherently in the FRP matrix at fabrication. An in-house fabricated NACA 4412 WTB incorporating this array of network hollow channels was damaged in flexure and then autonomously repaired using the vascular channels. The blade was re-tested under flexure to ascertain the efficiency of the recovered mechanical properties.