• Title/Summary/Keyword: Trisection of angle

Search Result 4, Processing Time 0.019 seconds

A Fabrication of an Angle Trisection Tool Using Veprtskii's Method (Veprtskii의 방법을 활용한 각의 삼등분 도구 제작)

  • Han, Inki
    • Communications of Mathematical Education
    • /
    • v.36 no.4
    • /
    • pp.627-644
    • /
    • 2022
  • In this study various angle trisection tools based on Archimedes' insertion method were investigated, some tools were fabricated and their characteristics were compared. Through these works, it was found that factors such as the convenience of use, arbitrariness of the trisected angle, and simplicity of structure should be considered in the production and utilization of the trisection tool. Considering the factors described above, attention was paid to the method proposed by Veprtskii A.I. in 1888 as a making method of the angle trisection tool. In this study, we improved the method proposed by Veprtskii A.I., we used two wooden chopsticks and a string to make an angle trisection tool. The improved trisection tool had fewer parts than other trisection tools, a simple structure, and more convenient usage. In particular, this tool divided an arbitrary angle(not a specific angle) into the same three parts, and the production cost was low and the production process was simple. This tool is expected to be widely used in concrete activities related to the properties of the exterior angles of triangles and the properties of isosceles triangles in mathematics classrooms.

The reinterpretation and the visualization of Pappus' methods for trisecting the angle (Pappus 가 보인 일반각의 3등분문제 해결의 재조명과 시각화)

  • Kim, Hyang Sook;Kim, Yang;Pak, Jin Suk
    • East Asian mathematical journal
    • /
    • v.34 no.2
    • /
    • pp.219-238
    • /
    • 2018
  • The purpose of this paper is to reinterpret and visualize Pappus' methods for trisecting the angle by utilizing the Nicomedes' conchoid and Apollonius' symptom of a hyperbola. In particular, we reinterpret the Pappus' three results which are the methods of hyperbola and circle, the trisection of the arc and focus and directrix of the hyperbola by 3 steps(analysis, construction, and proof) in the current middle school curriculum of Mathematics. Moreover, we visualize the construction of an hyperbola which is represented by means of an eccentricity.

The reinterpretation and visualization about trisecting general angle in Medieval Islam using conic sections (원뿔곡선을 이용한 중세 이슬람의 일반각의 3등분문제의 재조명과 시각화)

  • Kim, Hyang Sook;Kim, Mi Yeoun;Park, Jae Hyun
    • East Asian mathematical journal
    • /
    • v.35 no.2
    • /
    • pp.141-161
    • /
    • 2019
  • The purpose of this paper is to reinterpret and visualize the trisection line construction of general angle in the Medieval Islam using conic sections. The geometry field in the current 2015 revised Mathematics curriculum deals mainly with the more contents of analytic geometry than logic geometry. This study investigated four trisecting problems shown by al-Haytham, Abu'l Jud, Al-Sijzī and Abū Sahl al-Kūhī in Medieval Islam as one of methods to achieve the harmony of analytic and logic geometry. In particular, we studied the above results by 3 steps(analysis, construction and proof) in order to reinterpret and visualize.

The reinterpretation and visualization for methods of solving problem by Khayyam and Al-Kāshi for teaching the mathematical connection of algebra and geometry (대수와 기하의 수학적 연결성 지도를 위한 Khayyam과 Al-Kāshi의 문제 해결 방법 재조명 및 시각화)

  • Kim, Hyang Sook;Park, See Eun
    • East Asian mathematical journal
    • /
    • v.37 no.4
    • /
    • pp.401-426
    • /
    • 2021
  • In order to propose ways to implement mathematical connection between algebra and geometry, this study reinterpreted and visualized the Khayyam's geometric method solving the cubic equations using two conic sections and the Al-Kāshi's method of constructing of angle trisection using a cubic equation. Khayyam's method is an example of a geometric solution to an algebraic problem, while Al-Kāshi's method is an example of an algebraic a solution to a geometric problem. The construction and property of conics were presented deductively by the theorem of "Stoicheia" and the Apollonius' symptoms contained in "Conics". In addition, I consider connections that emerged in the alternating process of algebra and geometry and present meaningful Implications for instruction method on mathematical connection.