• Title/Summary/Keyword: Trumpet horn

Search Result 1, Processing Time 0.015 seconds

A study on the design of a trumpet horn for automobiles based on acoustic reactance at the horn throat (혼 입구에서의 음향 리액턴스에 근거한 자동차용 트럼펫 혼의 설계 연구)

  • Junsu Lee;Woongji Kim;Daehyun Kim;Dongwook Yoo;Wonkyu Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2024
  • A car horn serves a crucial safety role as a means of communication between drivers and a part that alerts pedestrians in advance. While previous studies have utilized finite element method and electric circuit model to simulate and analyze characteristics of the car horns, there remains a lack of research on design methods of a trumpet horn. This paper presents a design approach that predicts the operating frequency based on the acoustic reactance at the throat of the horn, once the vibrating part is determined. We deal with a horn combining both an exponential horn and a waveguide in the acoustic section, and confirm that the acoustic reactance at the horn throat measured by impedance tube experiment agrees well compared with the numerical result obtained using the finite element method. The resonance frequency of the car horn is predicted using the COMSOL Multiphysics finite element numerical analysis model, and the proposed design method is validated by measuring the operating frequency of the designed horn in a sound pressure experiment. As a result, the resonance measured in a semi-anechoic chamber environment by applying a DC voltage of 12 [V] excluding the holder occurs accurately within a few [Hz] of the design operating frequency. This paper discuss the design method of a trumpet horn from the perspective of the horn's acoustic reactance, and is expected to be useful for designing horn systems.