• Title/Summary/Keyword: Truncated Differential Cryptanalysis

Search Result 3, Processing Time 0.021 seconds

Performance Improvement of Power attack with Truncated Differential Cryptanalysis (부정차분을 이용한 전력분석공격 향상)

  • Kang, Tae-Sun;Kim, Hee-Seok;Kim, Tae-Hyun;Kim, Jong-Sung;Hong, Seok-Hie
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.155-158
    • /
    • 2008
  • In 1989, Kocher et al. introduced Differential Power Attack on block ciphers. This attack allows to extract secret key used in cryptographic computations even if these are executed inside tamper-resistant devices such as smart card. Since 1989, many papers were published to improve resistance of DPA. At FSE 2003 and 2004, Akkar and Goubin presented several masking methods to protect iterated block ciphers such as DES against Differential Power Attack. The idea is to randomize the first few and last few rounds(3 $\sim$ 4 round) of the cipher with independent random masks at each round and thereby disabling power attacks on subsequent inner rounds. This paper show how to combine truncated differential cryptanalysis applied to the first few rounds of the cipher with power attacks to extract the secret key from intermediate unmasked values.

  • PDF

Truncated Differential Cryptanalysis on PP-1/64-128 (블록 암호 PP-1/64-128에 대한 부정 차분 공격)

  • Hong, Yong-Pyo;Lee, Yus-Sop;Jeong, Ki-Tae;Sung, Jae-Chul;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.35-44
    • /
    • 2011
  • The PP-1/64-128 block cipher support variety data block and secret key size. Also, it is suitable for hardware implementation and can much easier to apply Concurrent Error Detection(CED) for cryptographic chips compared to other block ciphers, because it has same encryption and decryption process. In this paper, we proposed truncated differential cryptanalysis of PP-1/64-128. the attack on PP-1/64-128 block cipher requires $2^{50.16}$ chosen plaintexts, $2^{46.16}$ bytes memory spaces and $2^{50.45}$ PP-1/64-128 encryption to retrieve secret key. This is the best result of currently known PP-1/64-128 differential cryptanalysis.

Performance Improvement of Power Attacks with Truncated Differential Cryptanalysis (부정차분을 이용한 전력분석 공격의 효율 향상*)

  • Kang, Tae-Sun;Kim, Hee-Seok;Kim, Tae-Hyun;Kim, Jong-Sung;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • In 1998, Kocher et al. introduced Differential Power Attack on block ciphers. This attack allows to extract secret key used in cryptographic primitives even if these are executed inside tamper-resistant devices such as smart card. At FSE 2003 and 2004, Akkar and Goubin presented several masking methods, randomizing the first few and last few($3{\sim}4$) rounds of the cipher with independent random masks at each round and thereby disabling power attacks on subsequent inner rounds, to protect iterated block ciphers such as DES against Differential Power Attack. Since then, Handschuh and Preneel have shown how to attack Akkar's masking method using Differential Cryptanalysis. This paper presents how to combine Truncated Differential Cryptanalysis and Power Attack to extract the secret key from intermediate unmasked values and shows how much more efficient our attacks are implemented than the Handschuh-Preneel method in term of reducing the number of required plaintexts, even if some errors of Hamming weights occur when they are measured.