• Title/Summary/Keyword: Tumor metabolism

Search Result 239, Processing Time 0.02 seconds

Convergence of Cancer Metabolism and Immunity: an Overview

  • Van Dang, Chi;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.4-9
    • /
    • 2018
  • Cancer metabolism as a field of research was founded almost 100 years ago by Otto Warburg, who described the propensity for cancers to convert glucose to lactate despite the presence of oxygen, which in yeast diminishes glycolytic metabolism known as the Pasteur effect. In the past 20 years, the resurgence of interest in cancer metabolism provided significant insights into processes involved in maintenance metabolism of non-proliferating cells and proliferative metabolism, which is regulated by proto-oncogenes and tumor suppressors in normal proliferating cells. In cancer cells, depending on the driving oncogenic event, metabolism is re-wired for nutrient import, redox homeostasis, protein quality control, and biosynthesis to support cell growth and division. In general, resting cells rely on oxidative metabolism, while proliferating cells rewire metabolism toward glycolysis, which favors many biosynthetic pathways for proliferation. Oncogenes such as MYC, BRAF, KRAS, and PI3K have been documented to rewire metabolism in favor of proliferation. These cell intrinsic mechanisms, however, are insufficient to drive tumorigenesis because immune surveillance continuously seeks to destroy neo-antigenic tumor cells. In this regard, evasion of cancer cells from immunity involves checkpoints that blunt cytotoxic T cells, which are also attenuated by the metabolic tumor microenvironment, which is rich in immuno-modulating metabolites such as lactate, 2-hydroxyglutarate, kynurenine, and the proton (low pH). As such, a full understanding of tumor metabolism requires an appreciation of the convergence of cancer cell intrinsic metabolism and that of the tumor microenvironment including stromal and immune cells.

Cancer Metabolism: Fueling More than Just Growth

  • Lee, Namgyu;Kim, Dohoon
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.847-854
    • /
    • 2016
  • The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slowergrowing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates that altered metabolism plays key roles in supporting proliferation-independent functions of cancer such as cell survival within the ischemic and acidic tumor microenvironment, immune system evasion, and maintenance of the cancer stem cell state. As these aspects of cancer cell metabolism are critical for tumor maintenance yet are less likely to be relevant in normal cells, they represent attractive targets for cancer therapy.

Imaging Cancer Metabolism

  • Momcilovic, Milica;Shackelford, David B.
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.81-92
    • /
    • 2018
  • It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

Cancer stem cell metabolism: target for cancer therapy

  • Chae, Young Chan;Kim, Jae Ho
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.319-326
    • /
    • 2018
  • Increasing evidence suggests that cancer stem cell (CSC) theory represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to their more established role in maintaining minimal residual disease after treatment and forming the new bulk of the tumor, CSCs might also critically contribute to tumor recurrence and metastasis. For this reason, specific elimination of CSCs may thus represent one of the most important treatment strategies. Emerging evidence has shown that CSCs have a different metabolic phenotype to that of differentiated bulk tumor cells, and these specific metabolic activities directly participate in the process of CSC transformation or support the biological processes that enable tumor progression. Exploring the role of CSC metabolism and the mechanism of the metabolic plasticity of CSCs has become a major focus in current cancer research. The targeting of CSC metabolism may provide new effective therapies to reduce the risk of recurrence and metastasis. In this review, we summarize the most significant discoveries regarding the metabolism of CSCs and highlight recent approaches in targeting CSC metabolism.

Tumor bioenergetics: An emerging avenue for cancer metabolism targeted therapy

  • Kee, Hyun Jung;Cheong, Jae-Ho
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2014
  • Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement would provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies.

Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer

  • Jin, Li-Hui;Wei, Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7015-7019
    • /
    • 2014
  • Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.

Recurrent thymic carcinoid tumor in familial isolated primary hyperparathyroidism

  • Song, Jeong Eun;Shon, Mu Hyun;Kim, Ga Young;Lee, Da Young;Lee, Jung Hun;Kim, Jong Ho;Shon, Ho Sang;Lee, Ji Hyun;Jeon, Eon Ju;Jung, Eui Dal
    • Journal of Yeungnam Medical Science
    • /
    • v.31 no.2
    • /
    • pp.131-134
    • /
    • 2014
  • Familial isolated primary hyperparathyroidism(FIPH) is associated with multiple endocrine neoplasia type 1 (MEN1) syndrome, primary hyperparathyroidism accompanied by jaw-tumor syndrome, and familial hypocalciuric hypercalcemia. FIPH may be an early stage of MEN1 or an allelic variant of MEN1. Thymic carcinoid tumor is a rare tumor in MEN1 syndrome. Here, the authors report the case of a 40-year-old man diagnosed with recurrent thymic carcinoid tumor and FIPH. Both the patient and his elder sister had been previously diagnosed to have FIPH with a novel frameshift mutation in the MEN1 gene. Initially, the patient underwent thymectomy because of an incidental finding of a mediastinal mass in his chest X-ray, and had remained asymptomatic over the following 4 years. Pancreas computed tomography conducted to evaluate MEN1 syndrome revealed anterior and middle mediastinal masses, and resultantly, massive mass excision was performed. Histological findings disclosed atypical carcinoids with infiltrative margins. In view of the thymic carcinoid tumor relapse that occurred in this patient, the authors recommend that regular pancreas and pituitary imaging studies be conducted for FIPH associated with a MEN1 gene mutation.

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L.;Goodwin, Justin;Sankaranarayanan, Ishwarya;Yetkin, Celal Emre;Hsieh, Meng-Hsiung;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy

  • Seon Ah Lim
    • BMB Reports
    • /
    • v.57 no.9
    • /
    • pp.388-399
    • /
    • 2024
  • Immunotherapy represents a promising treatment strategy for targeting various tumor types. However, the overall response rate is low due to the tumor microenvironment (TME). In the TME, numerous distinct factors actively induce immunosuppression, restricting the efficacy of anticancer immune reactions. Recently, metabolic reprogramming of tumors has been recognized for its role in modulating the tumor microenvironment to enhance immune cell responses in the TME. Furthermore, recent elucidations underscore the critical role of metabolic limitations imposed by the tumor microenvironment on the effectiveness of antitumor immune cells, guiding the development of novel immunotherapeutic approaches. Hence, achieving a comprehensive understanding of the metabolic requirements of both cancer and immune cells within the TME is pivotal. This insight not only aids in acknowledging the current limitations of clinical practices but also significantly shapes the trajectory of future research endeavors in the domain of cancer immunotherapy. In addition, therapeutic interventions targeting metabolic limitations have exhibited promising potential as combinatory treatments across diverse cancer types. In this review, we first discuss the metabolic barriers in the TME. Second, we explore how the immune response is regulated by metabolites. Finally, we will review the current strategy for targeting metabolism to not simply inhibit tumor growth but also enhance antitumor immune responses. Thus, we could suggest potent combination therapy for improving immunotherapy with metabolic inhibitors.

Study on Alternative Medicine in Cancer Therapy (건비익기법(健脾益氣法)의 종양치료활용(腫瘍治療活用)에 대(對)한 연구(硏究))

  • Kang, Yeon-yee;Kim, Sung-hoon;Kim, Dong-hee
    • Journal of Haehwa Medicine
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • In review of "invigorating spleen and supplementing qi" of clinical and experimental studies on malignant tumor, we obtained the conclusions as follows 1. Asthenic splenic qi is an important factor in mutation, occurrence and development of tumor. 2. The anti-tumor mechanism of "invigorating spleen and supplementing qi" is improvement of immune suveillance, controling cell proliferating period and enhancing body metabolism. 3. "Invigorating spleen and supplementing qi" is often used with "nourishing kidney" or "expelling pathogen" for treating cnacer. 4. In experimental studies, "invigorating spleen and supplementing qi" has effects on inhibiting occurrence and development of tumor, protecting mutation, inhibiting recurrence and metastasis, immune activity, enhancing metabolism, promoting bone marrow hemopoietic cell proliferation, increasing anti-tumor effect and protecting normal cells. 5. In clinical studies, "invigorating spleen and supplementing qi" has effects on prolonging the survival period of cancer patients, improving clinical symptoms and quality of life of cancer patients, degrading the side effects of western therapie(operation, chemotherapy and radiotherapy). 6. "Invigorating spleen and supplementing qi" is an extensive discipline of syndrome differentiation used to inhibit occurence, development, recurrence and metastasis.

  • PDF