• Title/Summary/Keyword: Turbocharger

Search Result 196, Processing Time 0.029 seconds

A Study on Performance Characteristics in Diesel Engine When Applied Ball Bearing Type Turbocharger (볼 베어링 터보차져를 적용시 디젤엔진 성능 특성에 관한 연구)

  • Eom, Myung-Do;Kim, Moon-Suck;Baik, Doo-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.74-78
    • /
    • 2010
  • Turbocharger in the application to a diesel engine was widely used in automobile industries for the improvement of engine performance. To comply with stringent emission standards, ball bearing turbocharger has been developed by applying new emission reduction technology. Up to date turbocharger has been proved as an essential part of diesel engines by demonstrating its improved engine performance, fuel efficiency and reduced emission as well. In this research, the performance of the ball bearing turbocharger was compared by the conventional journal bearing type turbocharger. The results shows that ball baring turbocharger was proved to be 10~13% higher fuel efficiency and 30% less average emission than journal bearing turbocharger.

Study on the Oil-free Turbocharger Supported by Air Foil Bearing (공기 포일 베어링으로 지지되는 무급유 터보 과급기 회전체 설계에 대한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.453-458
    • /
    • 2002
  • The feasibility study on supporting a turbocharger rotor on air foil bearing is investigated. Based on finite difference method and Newton-Raphson method, the static equilibrium position of a turbocharger rotor is predicted. And using finite difference method and perturbation method, dynamic characteristics of air foil bearings are calculated. Rotordynamic analysis is performed by finite element method, with collaboration of calculated stiffness and damping of foil bearing. The effect of compliance and clearance of bump foil bearing on the oil-free turbocharger is investigated in terms of rotordynamics. And the critical speeds, eccentricity ratio, vibration amplitude, and stability are considered. It is demonstrated that foil bearings offer a rlausible replacement for oil-lubricated bearings in turbocharger.

  • PDF

A Study on Performance and Exhaust GAS Characteristics of the Diesel Engine with Turbocharger and Intercooler (터보 과급기와 중간 냉각기를 장착한 디젤기관의 성능 및 배출가스에 관한 연구)

  • 류규현;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.86-93
    • /
    • 1999
  • Turbocharger has been used to increase the performance of diesel engine, especially ship engine , for years. Recently, the turbocharger is being adopted not only for an agricultural engine but also for an automobile engine. To improve the performance of diesel engine , the problem of the reduction of A/F ratio in high speed should be solved. Turbocharger is well known for its cost effectiveness, reliability and duration . In this study, an experiment was conducted to verify simulation program . The results for natural aspiration engine and turbocharged engine were compared. In order to estimate the characteristics of exhaust gas, D-13 mode was selected. Power, torque and BSFC of turbocharged engine were increased than those of natural aspiration engine by about 48%, 46% and 5%, respectively . The components in exhaust gas except NOx from turbocharger engine were less than the amount set up for 2000-year regulation.

  • PDF

A Study on the Oil-free Turbocharger Supported by Air Foil Bearing (공기 포일 베어링으로 지지되는 무급유 터보 과급기 회전체 설계에 대한 연구)

  • Lee Yong-Bok;Kim Tae-Ho;Kim Chang-Ho;Sa Jong-Sung;Lee Nam-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.51-56
    • /
    • 2003
  • The feasibility study on the oil-free turbocharger supported by air foil bearings is investigated. Using the perturbation method, dynamic characteristics of air foil bearings are calculated based on the static equilibrium position of a turbocharger rotor is predicted. With collaboration of calculated stiffness and damping of foil bearing, rotordynamic analysis is performed using the finite element method. The effects of bump compliance and bearing clearance on rotordynamic characteristics of the oil-free turbocharger such as the critical speeds, eccentricity ratio, vibration amplitude and stability are investigated.

Parametric Study on the Design of Turbocharger Journal Bearing (터보챠져 저어널베어링의 설계에 관한 매개변수 연구)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed to overcome the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. Therefore, in this study, the effects of the type of inlet oil port, inlet temperature and the sort of engine oil on the performance of a turbocharger bearing are to be investigated. It is found that the type of oil inlet ports, the control of inlet oil temperature and the selection of engine oil type play important roles in determining the temperature and pressure, then the friction and load of a turbocharger journal bearing at high speed operation.

Establishment of Multi-Stage Turbocharger Layout for HALE UAV Engine and Its Performance Assessment (고고도 장기체공 무인기 엔진용 다단 터보차저 구성 및 성능해석)

  • Kang, Young Seok;Lim, Byung Jun;Kim, Jong Kuk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.31-36
    • /
    • 2015
  • A multi-stage turbocharger system has been constructed for HALE UAV internal combustion engine. To boost rarefied intake air up to sea level condition, the turbocharger system should consist of 3 stages including heat exchanger located after compressor outlet to drop compressed air temperature. One dimensional system analysis has been conducted by matching required power between compressor and turbine and adequate turbochargers have been searched for from commercially available models targeting for automobiles. By applying commercial automobile turbochargers to the multi-stage turbocharger system, it is expected that considerable amount of research resources will be saved.

Improvement of the Structural Soundness of a Small-Sized Turbocharger Using Fluid-Structural Interaction Analysis (유체-구조 연성해석 기법을 이용한 소형 터보차저 건전성 향상 연구)

  • Gwak, Woo-Gyeong;Kim, Youn-Jea
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.24-29
    • /
    • 2016
  • A small-sized turbocharger is generally used in downsizing engine for various vehicles. When a centrifugal compressor, which is one of the crucial units of the turbocharger, is downsized, the compressor has much more possibilities of being damaged because of its high rotating speed, causing insecure structural soundness. Thus, it is of essential to study on the improvement of the structural soundness of a small-sized turbocharger. In this study, numerical analysis on the various blade geometries and mass flow rate of the compressor was performed using the commercial software ANSYS CFX. In addition, the evaluation on the structural soundness of a compressor impeller for respective cases was conducted using ANSYS Mechanical. As a result, it was shown that the compressor had higher efficiency with increasingly secured structural soundness.

Noise Diagram of an Automotive Turbo Charger and Its Applications (차량용 터보차져의 소음도표 작성 및 응용)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.502-509
    • /
    • 2010
  • A test facility which can simultaneously measure turbocharger operating condition variables and vibro-acoustic emission in the situations that are quite similar to real internal combustion engine operating conditions has been introduced. Using this facility, a new method sweeping from full open throttle to deep surge region along constant speed curves can be utilized instead of the stationary method that has been traditionally used to obtain turbocharger compressor maps. Data covering an extensive range of the compressor performance map have been collected and analyzed. An experimental study is performed to define a noise diagram that correlates vibro-acoustic measurements to aerothermodynamic operating conditions. An instrumentation set in the facility allows the automatic definition of the operating point on the turbine and compressor map of the turbocharger. Also, radiated sound pressure and casing vibration data corresponding to the point are obtained by a microphone in the vicinity of the compressor casing and an accelerometer on the casing. The major source(s) of noise at specific operating point on the map can be easily identified with these maps. Also, acoustic characteristics of a given turbocharger at the vicinity of the surge as well as in the surge are also defined. Finally, the possibility to define mild surge region of a turbocharger using vibro-acoustic measurements is studied.

A Comparative Study on Engine Performance and Exhaust Emission Characteristics of Response Power 150HP & 240HP Turbocharged Marine Diesel Engine (대응출력 150마력 및 240마력 터보차저 선박용 디젤기관의 동력성능 및 배출특성 비교에 관한 연구)

  • Kim, Tae-Hyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • This is a thesis about the experiment of comparison characteristic of power and exhaust gas in the same condition between diesel engine that is equipped turbocharger different from response power to increase effectiveness of the engine which is recently used in a lot of industry which requires high power. Resulting of the experiment with natural aspiration diesel engine and turbocharger diesel engine, difference in low speed is not significant, but in high speed, effectiveness of turbocharger diesel engine is much higher than the other one. In other hand, in exhaust gas experiment, turbocharger model exhausts more $NO_X$ and $O_2$, but it doesn't significantly affect the result when it comes with decreasing of $CO_2$ and effectiveness of increased power characteristic. As a result, the turbocharger diesel engine is economically effective comparing with the natural aspiration diesel engine.

Numerical Analysis of Effective Turbocharger and Baffle on Flow Field in Warm-up Catalyst for Diesel Vehicles (디젤자동차용 웜업촉매 내의 유동장에 미치는 터보차저 및 배플의 영향에 관한 수치해석)

  • Choi, Byung-Chul;Juhng, Woo-Nam;Kang, Chang-Hyuk;Wi, Dae-Woong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.29-36
    • /
    • 2008
  • Diesel vehicle is growing in importance in light-duty sector as a way of reducing greenhouse gases due to improved fuel economy. Carbon monoxide, gas-phase hydrocarbon and organic fraction of diesel particulates can be oxidized to harmless products using a diesel warm-up catalyst (WCC). This study investigated the effect of a turbocharger and a baffle on flow fields and temperature distributions in the WCC for Diesel vehicles by a numerical analysis. In the case of the WCC with the turbocharger, velocity vectors and temperatures of inlet of the WCC have the relatively homogeneous distributions by the swirl generated from the turbocharger. Velocity vectors and temperatures of inlet of the WCC with the turbocharger and the baffle have the improved distributions in homogeneity compared with the case of the WCC without the baffle. The homogeneous flow field and the temperature distribution in the WCC may contribute to improve the conversion performance of the catalysts.