• Title/Summary/Keyword: Turbulent Oscillatory flow

Search Result 23, Processing Time 0.024 seconds

Flow Characteristics of Turbulent Oscillatory Flows in the Exit Region Connected to $180^{\circ}$Curved Duct ($180^{\circ}$ 곡관덕트에 연결된 출구 영역에서 난류 진동유동의 유동특성)

  • 김대욱;손현철;이행남;박길문
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.817-824
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flows in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(L.D.V) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from the experimentation were summarized as follows : The critical Reynolds number for a change from transitional oscillatory flow to turbulent oscillatory flow was about 75,000 in the 90 region of dimensionless axial position (x/Dh) which was considered as a fully developed flow region. In the turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Shear stress distributions of turbulent oscillatory flow was gradually increased as the flow proceeds to downstream.

  • PDF

Velocity Profile and Wall Shear Stress Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Straight Duct Located in Exit Region of a Curved Duct (가진 펌프에 연결된 곡관 출구의 직관에서 난류진동유동의 속도분포와 전단응력분포)

  • 손현철;이행남;박길문
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1378-1386
    • /
    • 2002
  • In the present study, velocity profile and wall shear stress distributions of developing turbulent oscillatory flows in an oscillator connected to straight duct located in exit region of a curved duct was investigated experimentally. The experimental study for air flows was conducted to measure axial velocity profiles, shear stress distributions by using the Laser Doppler Velocimetry(LDV) system with the data acquisition and processing system of Rotating Machinery Resolver(R.M.R) and PHASE software. The results obtained from experimental studies are summarized as follows. The critical Reynolds number for a change from transitional oscillatory flow to turbulent flow was about 7500, in the 60region of dimensionless axial position which was considered as a fully developed flow region. The turbulent oscillatory flow, velocity profiles of the inflow period in the entrance region were gradually developed, but those of the outflow period were not changed nearly. Velocity profiles of inflow and outflow were shown as a symmetric form in a fully developed flow region. The wall shear stress distributions of turbulent oscillatory flow increase rapidly as the flow proceeds to downstream and flow was in good agreement with the theoretically.

Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV (LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성)

  • Yun, Seok-Ju;Lee, Haeng-Nam;Sohn, Hyun-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.

Flow Characteristics of a Turbulent Pulsating Flow in a Straight Duct Connected to a Curved Duct by using an LDV (LDV에 의한 곡관 후류에 연결된 직관에서 난류맥동유동의 유동특성)

  • 손현철;이행남;박길문
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.177-186
    • /
    • 2003
  • In the present study, the flow characteristics of developing turbulent flows are investigated at the exit region of a square cross-sectional 180" curved duct with dimensions of 40mm$\times$40mm$\times$4000mm (height $\times$ width $\times$length). Smoke particles produced from mosquito coils were used as seed particles for the LDV measurement. Experiments were carried out to measure axial velocity profiles, shear stress distributions and entrance lengths by using an LDV system and Rotating Machinery Resolver RMR with PHASE software. Experimental results clearly show that the time-averaged Reynolds number does not affect oscillatory flow characteristics because the turbulent components tend to balance the oscillatory components in the fully developed flow region. Also, the velocity profiles are in good agreement with 1/7power law such as the results of steady turbulent flows. The turbulent intensity linearly increases along the walls and is slightly higher, especially in the period of deceleration. On the other hand, the LDV measurements show that shear stress values in slightly higher in the period of deceleration due to the flow characteristics in the exit region. The entrance length where flows become stable appears at the point that is 40 times the length of hydraulic diameter.eter.

Wall shear stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in a Square sectional Curved Duct (곡관덕트에서 난류진동유동의 전단응력분포와 압력분포)

  • Lee, H.G.;Son, H.C.;Lee, H.N.;Park, G.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.380-385
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in a square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to measure wall shear stress and pressure distributions, experimental studies for air flow are conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisition and the processing system. The wall shear stress measuring point bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $10^{\circ}$ intervals of the duct. The results obtained from the experimentation are summarized as follows: A wall shear stress value in an inner wall is larger than that in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

Comparative Study on k-ε and k-ω Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number (높은 레이놀즈수를 가진 난류 진동 경계층에서의 k-ε과 k-ω 난류모형의 비교)

  • Son, Min-Woo;Lee, Guan-Hong;Lee, Kil-Seong;Lee, Du-Han
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.189-198
    • /
    • 2011
  • The aim of this study is to compare k-$\varepsilon$ and k-$\omega$ closures under the condition of oscillatory layer flow at high Reynolds number. A one dimensional vertical model incorporated with flow momentum equations and turbulence models (k-$\varepsilon$ and k-$\omega$) is applied to the laboratory measurements in the turbulent oscillatory boundary layer. The numerical simulation reveals that both turbulence models calculate similar velocity profiles and turbulent kinetic energy (TKE). In addition, both deliver high accuracy under the condition of negligible spanwise pressure gradient. Therefore, it is recommended in this study to use k-$\varepsilon$ closure, of which numerical coefficients have been calibrated from many studies, for the cases of straight channel, estuary, and coastal environment where the spanwise pressure gradient is not significant.

Wall Shear Stress and Pressure Distributions of Developing Turbulent Oscillatory Flows in an Oscillator Connected to Curved Duct (가진 펌프에 연결된 곡관덕트에서 난류진동유동의 전단응력분포와 압력분포)

  • Sohn, Hyun-Chull;Lee, Hong-Gu;Lee, Haeng-Nam;Park, Gil-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.4 s.13
    • /
    • pp.37-42
    • /
    • 2001
  • In the present study, flow characteristics of turbulent oscillatory flow in an oscillator connected to square-sectional $180^{\circ}$ curved duct are investigated experimentally. In order to investigate wall shear stress and pressure distributions, the experimental studies for air flows we conducted in a square-sectional $180^{\circ}$ curved duct by using the LDV system with the data acquisitions and the processing system. The wall shear stress at bend angle of the $150^{\circ}$ and pressure distribution of the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) by $10^{\circ}$ intervals of the duct are measured. The results obtained from the experiment are summarized as follows : wall shear stress values in the inner wall we larger than those in an outer wall, except for the phase angle (${\omega}t/{\pi}/6$) of 3, because of the intensity of secondary flow. The pressure distributions are the largest in accelerating and decelerating regions at the bend angle(${\phi}$) of $90^{\circ}$ and pressure difference of inner and outer walls is the largest before and after the ${\phi}=90^{\circ}$.

  • PDF

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

Unsteady Flow Analysis of Supersonic Impinging Jet (초음속 충돌 제트에 대한 비정상 유동 해석)

  • Kim Sung-In;Park Seung O;Hong Seung Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • TNumerical simulations of the supersonic impinging jet flows are carried out using the 3D Navier-Stokes code. This paper is focuses on the unsteady flow features associated with stagnation bubbles and other oscillatory behavior. The 3D code was validated by reproducing the results of Lamont's experiments. Computation is carried out for the cases in which the unsteadiness of the plate shock has been observed experimentally. The computational results confirm the oscillatory feature in several kHz. Unsteady calculation with algebraic turbulence model is also performed. It is found that the laminar and turbulent results have some discrepancy in the transient period. However, both of them reveal the oscillatory behavior with similar frequency.

  • PDF

A CLOSED-FORM SOLUTION FOR TURBULENT WAVE BOUNDARY LAYERS

  • Larson, Magnus
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.66-70
    • /
    • 1995
  • The oscillatory boundary layer that develops when surface waves propagate over the sea bottom affects many flow-pendent phenomena in the coastal zone. Examples of such phenomena are wave energy dissipation due to bottom friction and the initiation and transport of sediment (Grant and Madsen 1986). In nature the boundary layer under waves will almost always be turbulent (Nielsen 1992). (omitted)

  • PDF