• Title/Summary/Keyword: Two-Cation salt

Search Result 26, Processing Time 0.03 seconds

Differences in Soil Chemical Properties Under Multi-layer System, USGA System and Mono-layer System for a Sports Turf (스포츠용 잔디의 다단구조, USGA구조 및 단층구조 지반에서 토양 화학성 차이)

  • Kim, Kyoung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.50-59
    • /
    • 2006
  • This study was initiated to investigate soil chemical properties under different soil systems. Data such as soil acidity(pH), electrical conductivity(EC), organic matter content(OMC), and cation exchange capacity(CEC) were analyzed with samples from multi-layer, USGA, and mono-layer systems. N, P, K and micronutrients were also measured. Multi-layer system was built up to 60-cm depth with rootzone layer, intermediate layer and two drainage layers. USGA system 45 centimeters deep was constructed with rootzone layer, intermediate layer and drainage layer. Mono-layer system, however, was made only with a 30-cm rootzone layer. Differences were observed in soil pH, EC, OMC, CEC and micronutrients. Soil pH was acceptable for turfgrass growth a year after establishment, being 5.5 to 6.5 in the study. Differences were greatly observed for EC among soil systems. Values of EC for multi-layer, USGA, and mono-layer systems were 39.79, 31.26 and 103.54 uS/em, respectively. The increase rate was approximately 4 to 8 times greater with mono-layer system than those with other two systems. Therefore, it was necessary to avoid micronutrient deficiency such as Fe, Mn etc. through an effective management program in mono-layer system because of its faster potential feasibility of salt accumulation. The greatest OMC was associated with USGA system, being 0.97% which was 11% over that of the other systems. Slight differences were observed for CEC among them. Mono-layer system produced 1.45 me/100g, 10.3% and 8.9% lower in CEC than those of multi-layer and USGA system, respectively. Micronutrients such as Fe, Zn, and Mn etc. were below the level required for turf growth, regardless of soil systems. It was considered that one year after turf establishment was not enough to build up micronutrients in sand-based soil systems to the normal level for a turf growth. These results demonstrate that intensive management program including grow-in concept fertilization should be integrated into sand-based soil systems, even after a year in establishment. Regular nutrient monitoring by soil analyses is a strong necessity to decide the kinds and amount of fertilizer. Also, strategic management program must be selectively employed according to sports turf soil systems.

Effect of Perforated PVC Underdrainage Pipe on Desalting of Plastic Film House Soils (시설재배지 유공관 암거배수에 의한 염류집적 경감효과)

  • Kim, Dae-Su;Yang, Jae E.;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Objective of this research was to remove the accumulated salts in the plastic film house soils by installing the perforated PVC (${\phi}10cm$) underdrainage pipes at 50 cm depth of soils with cultivating vegetables. Efficiency of the underdrainage pipes was assessed based on the changes of soil chemical properties such as pH, EC, and cations, and growth and yield parameters of the vegetables between the two treatments; the control and the underdrainage pipe treatments. The EC of the underdrainage pipes installed soils after two growing seasons were in the ranges of $1.42-2.88dS\;m^{-1}$ but those of the control were in the ranges of $3.86-4.53dS\;m^{-1}$, indication the underdrainage pipes effectively removed the accumulated salts in soils. The pHs of the control soils and the underdrainage pipe installed soil were in the ranges of 7.2-7.5 and 6.9-7.3, respectively. There was a significant correlation between pH and cation exchange capacity (CEC) of the soils ($CEC=17.107{\times}pH-106.2$, $r^2=0.759$, P < 0.05). The ECs of the soils at different depths were compared between the two treatments after cultivating vegetables with lettuce-lettuce-garland chrysanthemum rotation systems. The ECs of the control soils at depths of 0-10, 10-20, 20-30, 30-40, and 40-50 cm were 3.45, 3.47, 3.03, 2.03, and $2.28dS\;m^{-1}$, respectively, with decreasing with soil depths. On the other hand, the respective ECs of the underdrainage pipes installed soils were 2.43, 2.52, 2.28, 4.00, and $4.23dS\;m^{-1}$ with increasing with soil depths. This might be derived from the salts moved downward with the draining water into the subsoil. The order of cations moved downward was Mg > Ca > K, based on the ratios of cations at specific depth over those at the surface soil. The survival rates of lettuce after 15 days of transplanting in the underdrainage pipe installed soils were 98.2% as compared to 86.6% of the control. The underdrainage pipe treatment also increased the diameter of the lettuce stalk from 12.9mm of the control to 13.7mm. Overall results demonstrated that the installment of the underdrainage pipes in the subsoils of the salt accumulated plastic film house soil effectively removed the salts by leaching downward,resulting in lowering soil EC and enhancing the growth and yield of vegetables.

Volume-Weighted Ion Cocentration of Rainwater in Taean Area (태안지역 강우의 화학성분 특성)

  • Lee, Jong-Sik;Jung, Goo-Bok;Kim, Jin-Ho;Kim, Won-Il;Yun, Sun-Gang;Im, Jae-Cheal
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.284-288
    • /
    • 2001
  • This study was carried out to investigate the chemical properties of rainwater in Taean area. Rainwater was collected during seven months from April to October in 2000, and analyzed for its chemical composition. The pH of rainwater at April and May were higher than those from June to September. Occurrence rate of rain above pH 5.6 was 42.1%, which showed the highest ratio from rainwater samples during investigation periods. Those of pH $5.0{\sim}5.6$ and $4.5{\sim}5.0$ range were 21.1 and 31.6%, respectively. The major cation in rainwater were $Ca^{2+}$ and $NH_4\;^+$, and $SO_4\;^{2-}$ was more than 50% of total anion composition. Monthly variation of acidity neutralization capacity by $Ca^{2+}$ and $NH_4\;^+$ was decreased during rainy season. The $nss-SO_4\;^{2-}/NO_3\;^-$, ratio was 2.0 which means $SO_4\;^{2-}$ contributed to acidity of rainwater two times more than $NO_3\;^-$.

  • PDF

A Study on Salt Removal in Controlled Cultivation Soil Using Electrokinetic Technology (전기동력학 기술을 이용한 시설재배지 토양의 염류제거 효과연구)

  • Kim, Lee Yul;Choi, Jeong Hee;Lee, You Jin;Hong, Soon Dal;Bae, Jeong Hyo;Baek, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1230-1236
    • /
    • 2012
  • To verify that the electrokinetic remediation is effective for decreasing salinity of fields of the plastic-film house, field tests for physical property, chemical property, and crop productivity of soils have been conducted. The abridged result of those tests is as follows. In the EK treatment, the electrokinetic remediation has been treated at the constant voltage (about 0.8 V $cm^{-1}$) for fields of the farm household. At this time, an alternating current (AC) 220 V of the farm household was transformed a direct current. The HSCI (High Silicon Cast Iron) that the length of the stick for a cation is 20cm, and the Fe Plate for an anion have been spread out on the ground. As the PVC pipe that is 10 cm in diameter was laid in the bottom of soils, cations descend on the cathode were discharged together. For soil physical properties according to the EK treatment, the destruction effect of soil aggregate was large, and the infiltration rate of water was increased. However, variations of bulk density and porosity were not considerable. Meanwhile, in chemical properties of soils, principal ions of such as EC, $NO_3{^-}$-N, $K^+$, and $Na^+$ were better rapidly reduced in the EK treated control plot than in the untreated control plot. And properties such as pH, $P_2O_5$ and $Ca^{2+}$ had a small impact on the EK. For cropping season of crop cultivation according to the EK treatment, decreasing rates of chemical properties of soils were as follows; $NO_3{^-}$-N 78.3% > $K^+$ 72.3% > EC 71.6% $$\geq_-$$ $Na^+$ 71.5% > $Mg^{2+}$ 36.8%. As results of comparing the experimental plot that EK was treated before crop cultivation with it that EK was treated during crop cultivation, the decreasing effect of chemical properties was higher in the case that EK was treated during crop cultivation. After the EK treatment, treatment effects were distinct for $NO_3{^-}$-N and EC that a decrease of nutrients is clear. However, because the lasting effect of decreasing salinity were not distinct for the single EK treatment, fertilization for soil testing was desirable carrying on testing for chemical properties of soils after EK treatments more than two times. In the growth of cabbages according to the EK treatment, the rate of yield increase was 225.5% for the primary treatment, 181.0% for the secondary treatment, and 124.2% for third treatment compared with the untreated control plot. The yield was increased by a factor of 130.0% for the hot pepper at the primary treatment (Apr. 2011), 248.1% for the lettuce at the secondary treatment (Nov.2011), and 125.4% for the young radish at the third treatment (Jul. 2012). In conclusion, the effect of yield increase was accepted officially for all announced crops.

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF

Studies on the analysis of phytin by the Chelatometric method (Chelate 법(法)에 의(依)한 Phytin 분석(分析)에 관(關)한 연구(硏究))

  • Shin, Jai-Doo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.1-13
    • /
    • 1968
  • Phytin is a salt(mainly calcium and magnesium) of phytic acid and its purity and molecular formula can be determined by assaying the contents of phosporus, calcium and magnesium in phytin. In order to devise a new method for the quantitative analysis of the three elements in phytin, the chelatometric method was developed as follows: 1) As the pretreatment for phytin analysis, it was ashfied st $550{\sim}600^{\circ}C$ in the presence of concentrated nitric acid. This dry process is more accurate than the wet process. 2) Phosphorus, calcium and megnesium were analyzed by the conventional and the new method described here, for the phytin sample decomposed by the dry process. The ashfied phytin solution in hydrochloric acid was partitioned into cation and anion fractions by means of a ration exchange resin. A portion of the ration fraction was adjusted to pH 7.0, followed by readjustment to pH 10 and titrated with standard EDTA solution using the BT [Eriochrome black T] indicator to obtain the combined value of calcium and magnesium. Another portion of the ration fraction was made to pH 7.0, and a small volume of standard EDTA solution was added to it. pH was adjusted to $12{\sim}13$ with 8 N KOH and it was titrate by a standard EDTA solution in the presence of N-N[2-Hydroxy-1-(2-hydroxy-4-sulfo-1-naphytate)-3-naphthoic acid] diluted powder indicator in order to obtain the calcium content. Magnesium content was calculated from the difference between the two values. From the anion fraction the magnesium ammonium phosphate precipitate was obtained. The precipitate was dissolved in hydrochloric acid, and a standard EDTA solution was added to it. The solution was adjusted to pH 7.0 and then readjusted to pH 10.0 by a buffer solution and titrated with a standard magnesium sulfate solution in the presence of BT indicator to obtain the phosphorus content. The analytical data for phosphorus, calcium and magnesium were 98.9%, 97.1% and 99.1% respectively, in reference to the theoretical values for the formula $C_6H_6O_{24}P_6Mg_4CaNa_2{\cdot}5H_2O$. Statical analysis indicated a good coincidence of the theoretical and experimental values. On the other hand, the observed values for the three elements by the conventional method were 92.4%, 86.8% and 93.8%, respectively, revealing a remarkable difference from the theoretical. 3) When sodium phytate was admixed with starch and subjected to the analysis of phosphorus, calcium and magnesium by the chelatometric method, their recovery was almost 100% 4) In order to confirm the accuracy of this method, phytic acid was reacted with calcium chloride and magnesium chloride in the molar ratio of phytic: calcium chloride: magnesium chloride=1 : 5 : 20 to obtain sodium phytate containing one calcium atom and four magnesium atoms per molecule of sodium phytate. The analytical data for phosporus, calcium and magnesium were coincident with those as determine d by the aforementioned method. The new method employing the dry process, ion exchange resin and chelatometric assay of phosphorus, calcium and magnesium is considered accurate and rapid for the determination of phytin.

  • PDF