• Title/Summary/Keyword: UF-retentate

Search Result 12, Processing Time 0.019 seconds

Functional Properties of Sunmul (Soybean Curd Whey) Concentrate by Ultrafiltration (한외여과에 의한 순물 농축액의 기능적 특성)

  • Kim, You-Pung;Eom, Sang-Mi;Chang, Eun-Jung;Kim, Woo-Jung;Oh, Hoon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.488-494
    • /
    • 2006
  • This study was carried out in order to investigate the feasibility of utilizing concentrated sunmul (soybean curd whey), which is a waste by-product of soybean curd processing, as a functional food ingredient. Sunmul Powder was concentrated by ultrafiltration and spray dried with or without dextrin. Oil adsorption capacity of UF retentate powder was similar to that of ISP (Isolated Soy Protein) and higher than that of sunmul powder, whereas water holding capacity of UF retentate powder was lower than that of ISP. Protein solubility of all types of UF retentate powder was significantly higher than that of ISP at pH 2.0-10.0 with the lowest protein solubility seen at pH 4.0 and solubility increasing as the conditions became more acidic or alkaline. Emulsifying activity indexes of UF retentate powder at pH 2.0-10.0 were not influenced by pH. Emulsion stability of 4% sunmul solution was lowest at pH 4.0, but that of UF retentate powder was higher at acidic pH values and decreased with increasing pH. Foaming capacities of sunmul and UF retentate powder were high at pH 4.0-6.0, but the foam of UF retentate powder disappeared within 20 minutes in all conditions of pH.

Manufacture of Gouda Cheese from the Concentrated Milk by the Use of Ultrafiltration (Ultrafiltration을 이용한 Gouda Cheese의 제조)

  • Lee, Yong-Lim;Kim, Sang-Pil;Park, Hee-Kyung;Heo, Tae-Ryeon
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.99-105
    • /
    • 1994
  • In this study we compared traditional cheesemaking process with the process utilizing ultrafiltration(UF) system. The whole milk retentates were prepared by ultrafiltration to volume concentration ratio(VCR) of 2.00:1, 2.25:1 and 2.50:1. Along with the untreated whole milk, there were studies in terms of the change of pH, titratable acidity and Soxhlet-Henkel($\circ $SH) value by mesophilic lactic starter and curd formation by rennet during Gouda cheese manufacture. Due to the increase of buffering effect titratable acidity and $\circ $SH value increased with the higher concentration ratio. When inoculated with the same volume of mesophilic lactic starter, less pH change occurred in UF retentates than in control milk. When added 0.0025% rennet, UF retentates coagulated 16~ 17 minutes ealier then the control milk. Gouda cheese yield from raw milk and UF retentates was 12.5~13.1% equally, but yield efficiency of UF retentate cheese was slightly higher than that of the raw milk cheese. Quantity of whey from retentate cheese was inversely related to VCR. But whey from retentate cheese contained higher percentage of amjor components than that from control milk cheese. In early ripening, the concentrations of lactose and soluble nitrogen compound were higher in retentate cheeses. Lactose content of control milk cheese was 3.49% and that of 2.00:1. 2.25:1, 2.50:1 VCR retentate was 3.77%, 4.89%, 7.03%, respectively. Thus, the more concentrated cheese contained a higher amount of lactose and all the lactose was hyerolyzed durion 35-day ripenion period. Soluble nitrogen compound of control milk cheese was 1.22% and that of UF cheeses was 1.82~2.06%. After 20-day ripening, soluble nitrogen compound increased starply in UF cheese.

  • PDF

Ultra- and Nano-Filtration Process Optimization of Isoflavones and Oligosaccharides from Sunmul

  • Kim, Woo-Jung;Kim, Hak-Hyun;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Optimal conditions of ultrafiltration (UF) and nanofiltration (NF) were investigated for separation and concentration of isoflavones and oligosaccharides from Sunmul. Levels of COD, BOD, and suspended solids (SS) in UF and NF permeates were also determined to evaluate effectiveness of these processes for reducing water pollution. Optimal UF operation conditions to achieve minimal fouling and maximal flux were $33-34^{\circ}C$ operating temperature and 2.3-2.4 bar trans-membrane pressure. Recovery yields of isoflavones and oligosaccharides in UF retentate were 11.49-28.16% and 12.77-27.57%, respectively. Increase in volumetric concentration factor (VCF) resulted in more functional compounds of isoflavones and oligosaccharides passing through UF membrane. Total isoflavone and oligosaccharide yields decreased by 3% as VCF increased from 6.0 to 8.0 and from 8.0 to 10.0, while decreased significantly by 10% as VCF decreased from 4.0 to 6.0. Optimal NF operating conditions were 192-195 psig operating pressure at $30-33^{\circ}C$. Total yields of isoflavones and oligosaccharides significantly decreased at VCF 8.0, whereas did not decrease up to VCF 6.0 during NF operation. Therefore, VCF 6.0 was recommended for economical process. COD and BOD decreased by more than 98% after NF process, and SS were not detected after UF process. These results indicated sequential filtration process was useful for separation of isoflavones and oligosaccharides from Sunmul and for reducing water contaminants.

Optimization of Membrane Separation Process for the Production of Dietary Fibers from Tangerine Peels (감귤 과피 유래 식이섬유 생산을 위한 막분리 공정 최적화)

  • Woo, Gun-Jo;Nam, Jin;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.378-383
    • /
    • 1996
  • Dietary fibers (DF) have been used as functional food components due to the various health promoting activities. Dietary fibers have been separated from the peels of Korean tangerine by employing ultrafiltration (UF) membranes. Optimum conditions in a batch type ultrafiltration unit using YM100 (molecular weight cut-off, MWCO=100,000), YM 10 (MWCO=10,000) and YM1 (MWCO=1,000) membranes were : transmembrane pressure 7.5 psi, temperature of the peel extracts $35^{\circ}C$, and pH of the peel extract 3.0, respectively. The flux in YM 10 membrane unit was higher than that in YM 10 or YM 1 membrane unit. However, YM 100 membrane was superior to YM 10 or YM 1 membrane with respect to the recovery of the retentate and the contents of DF The contents of DF in the tangerine peel extract, in the 170 mesh retentate, and in the YM 100 retentate were shown to be 33.4%, 18.5% and 8.4% based on dry matter, respectively. Most dietary fibers were recovered at the separation stages of 170 mesh and YM 100.

  • PDF

Treatment of natural rubber wastewater by membrane technologies for water reuse

  • Jiang, Shi-Kuan;Zhang, Gui-Mei;Yan, Li;Wu, Ying
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • A series of laboratory scale experiments were performed to investigate the feasibility of membrane separation technology for natural rubber (NR) wastewater treatment and reuse. Three types of spiral wound membranes were employed in the cross-flow experiments. The NR wastewater pretreated by sand filtration and cartridge filtration was forced to pass through the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes successively. The UF retentate, which containing abundant proteins, can be used to produce fertilizer, while the NF retentate is rich in quebrachitol and can be used to extract quebrachitol. The permeate produced by the RO module was reused in the NR processing. Furthermore, about 0.1wt% quebrachitol was extracted from the NR wastewater. Besides, the effluent quality treated by the membrane processes was much better than that of the biological treatment. Especially for total dissolved solids (TDS) and total phosphorus (T-P), the removal efficiency improved 53.11% and 49.83% respectively. In addition, the removal efficiencies of biological oxygen demand (BOD) and chemical oxygen demand (COD) exceeded 99%. The total nitrogen (T-N) and ammonia nitrogen (NH4-N) had approximately similar removal efficiency (93%). It was also found that there was a significant decrease in the T-P concentration in the effluent, the T-P was reduced from 200 mg/L to 0.34 mg/L. Generally, it was considered to be a challenging problem to solve for the biological processes. In brief, highly resource utilization and zero discharge was obtained by membrane separation system in the NR wastewater treatment.

Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein (난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발)

  • Kang Byung Chul;Lee Kwang Hyun
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.9-14
    • /
    • 2005
  • Batch enzymatic hydrolysis of egg yolk protein by protease was carried out at laboratory scale coupled to an ultrafiltration module. Effect of ethanol concentrations on the performance of enzymatic hydrolysis was studied to determine the optimum condition of recovery of hydrolysate. The enzymatic hydrolysis was conducted stepwise with following conditions, $50^{\circ}C$, pH 10.0 and pH 6.5. Ethanol concentration was changed from 10 to $40\%$ (w/w). As ethanol concentration was increased, the recovery yield of total solid and protein in enzymatic hydrolysate was also increased. The content of sialic acid and protein in hydrolysate was independent of ethanol concentration. We also investigated the effect of ethanol concentration on the performance of ultrafiltration. As the concentration of ethanol in yolk protein was increased, the recovery yield of product was increased. Ultra­filtration of egg yolk protein hydrolysate was conducted to increase the content of sialic acid. Four ultrafiltation modules were used in this study, and we evaluated the performance of the UF modules. When Amicon module was used, the recovery percentage of total solid in retentate was $6.0\%$, which is the highest among the modules used. In spite of the difference in the recovery yield of total solid, the purity of sialic acid in retentate was about $2.0\%$, which was 5 times higher than that in feed. It was concluded that the recovery yield and the purity of sialic acid did not correlate with the types of modules and the size of MWCO.

Effects of Flow Rate of Feed Kanjang and Volume Reduction Ratio of Retentate on the Permeate Flux and Rejection of Microbes Cells and Components in Kanjang during Ultrafiltration Operations (재래식 간장의 한외여과시 공급액의 주입속도와 잔류액의 용량감소율이 간장의 투과유속, 미생물균체 및 성분저지율에 미치는 영향)

  • Kwon, Kwang-Il;Lee, Jong-Gu;Choi, Jong-Dong;Chung, Hyun-Chae;Im, Moo-Hyeog;Kim, Ki-Ju;Kim, Woo-Seong;Sung, Jun-Hyun;Kwon, O-Jun;Kim, Young-Ji;Suh, Chung-Sik;Choi, Cheong;Choi, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.72-76
    • /
    • 2003
  • Ultrafiltration (UF) tests performed on traditional soy sauce (kanjang) using UF flat membrane test cell unit with thin film laminar flow similar to the spiral type membrane module in batch operations revealed reduction in permeate flux is proportional to the logarithm values of volume reduction ratio of the retentate kanjang at different feed rate of kanjang. Feed rate of 1.5 L/min was found to be adequate for long-term UF operation of kanjang using the test unit attached with MW cut-off size of 200,000 dalton polyoleffin plastic membrane in batch operation with the least concentration polarization. The higher the feed rate of kanjang, the lower the permeability of total nitrogen and NaCl, resulting in lower optical density at 500 nm and lower permeability of minerals such as Cu, Mn, and Mg. Microbial cells were completely rejected regardless of the feed rate, whereas most free amino acids were not.

Characterization of Mixed Apple and Carrot Retentates Using Response Surface Methodology

  • Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.155-159
    • /
    • 2006
  • Models capable of predicting the product quality of mixed apple and carrot retentates (MACR) have been developed using response surface methodology and used to characterize the effects of processing conditions including average transmembrane pressure (ATP), temperature, and blend ratio. Color, soluble solids, total sugar, vitamin C, acidity, turbidity, and viscosity were used to assess the product quality following the ultrafiltration (UF) process. $L^*-value$ decreased with increased ATP, but the value was not affected by changes in temperature. Blend ratio also greatly influenced the $L^*-value$. Redness ($a^*-value$), on the other hand, was less affected by temperature and ATP. As the ATP and temperature increased, yellowness increased gradually. Soluble solids contents appeared to decrease gradually as the ATP increased for all blend samples, but the effect of temperature seemed to be less. Total sugar content was more affected by temperature than ATP. In general, samples containing 75% carrot had higher amounts of vitamin C regardless of processing conditions. Changes in acidity were also complex and appeared to respond to interactions among ATP, temperature, and blend ratio. Turbidity increased for all samples as both ATP and temperature increased. The higher the amount of carrot in the blend samples, the higher values for turbidity. Although the changes were small, viscosity appeared to increase as the ATP and temperature increased during UF.

Physicochemical Properties of Mozzarella Cheese Made by Raw Milk Retentate using Ultrafiltration: A Review (한외여과로 농축된 원유로부터 제조된 Mozzarella 치즈의 이화학적 특성에 관한 연구: 총설)

  • Song, Kwang-Young;Lee, Jong-Ik;Chon, Jung-Whan;Hyeon, Ji-Yeon;Seo, Kun-Ho;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.1-15
    • /
    • 2011
  • Mozzarella cheese is recently the most consumed cheese in USA, European, South Korea, etc., and also a various different-type Mozzarella cheese could have great market appeal. However, many consumers would be more concerned about the nutritional aspects and physicochemical properties of Mozzarella cheese. Hence, ultrafiltration (UF) as a best tool of solving those concerns has been recognized. The objective of this review's paper would be suggested that the ultrafiltration (UF) techniques could be directly applied for manufacturing various different-type Mozzarella cheese with high physicochemical properties on fulfilling the consumers' various needs and desires for health.

  • PDF

Hydrostatic Pressure Effects on Physical Properties of Ultrafiltrated Skim Milk in the Presence of EGTA (EGTA를 첨가한 한외여과 탈지유의 물성에 미치는 초고압의 영향)

  • ;C. Kanno;T. Hagiwara
    • Food Science of Animal Resources
    • /
    • v.21 no.1
    • /
    • pp.32-37
    • /
    • 2001
  • The study investigated the effects of protein concentration, EGTA and strength of hydrostatic pressure on pH, viscosity and turbidity for ultra filtrated skim milk retentates. The results showed that hydrostatic pressure treatments up to 600 MPa did not affect the viscosity of skim milk, while the turbidity of skim milk increased at higher than 200 MPa. Addition of EGTA caused reduction in turbidity of skim milk, two times (2SR) and three times (3SR) concentrated skim milk retentates. Viscosity for 2SR and 3SR increased proportionally to the amount of EGTA, but viscosity of skim milk was not influenced by EGTA. High pressure treatment also did not cause any difference in viscosity and turbidity of skim milk. However, this treatment decreased viscosity and turbidity for 2SR and 3SR. In particular, 200 MPa treatment showed to induce a higher decrease in turbidity compared with 400 MPa.

  • PDF