• Title/Summary/Keyword: ULTC-based load model

Search Result 2, Processing Time 0.015 seconds

Application of Multi-step Undervoltage Load Shedding Schemes to the KEPCO System

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Choy, Young-Do;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.476-484
    • /
    • 2009
  • This paper deals with improvements to the special protection schemes (SPS) which have been applied to the low probability and high impact contingencies in the Korea Electric Power Corporation (KEPCO) system since 2004. Among them, the SPS for voltage instability in the Seoul metropolitan area is considered in this paper, and is a form of event-based undervoltage load shedding with a single-step scheme. Simulation results based upon a recent event that occurred on 765kV lines show that the current setting values of the SPS have to be revised and enhanced. In addition, by applying response-based multi-step undervoltage load shedding (UVLS) schemes to severe contingencies in the system, more effective results than those of the existing single-step SPS can be obtained. Centralized and distributed UVLS schemes are considered in the simulation. ULTC-based load recovery models and over excitation limiters (OXL) for the KEPCO system are also included in the long-term voltage instability studies.

The Advanced Voltage Regulation Method for ULTC in Distribution Systems with DG

  • Kim, Mi-Young;Song, Yong-Un;Kim, Kyung-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.737-743
    • /
    • 2013
  • The small-scaled onsite generators such as photovoltaic power, wind power, biomass and fuel cell belong to decarbonization techniques. In general, these generators tend to be connected to utility systems, and they are called distributed generations (DGs) compared with conventional centralized power plants. However, DGs may impact on stabilization of utility systems, which gets utility into trouble. In order to reduce utility's burdens (e.g., investment for facilities reinforcement) and accelerate DG introduction, the advanced operation algorithms under the existing utility systems are urgently needed. This paper presents the advanced voltage regulation method in power systems since the sending voltage of voltage regulators has been played a decisive role restricting maximum installable DG capacity (MaxC_DG). For the proposed voltage regulation method, the difference from existing voltage regulation method is explained and the detailed concept is introduced in this paper. MaxC_DG estimation through case studies based on Korean model network verifies the superiority of the proposed method.