• 제목/요약/키워드: URM infill wall

검색결과 5건 처리시간 0.019초

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.

Nonlinear analysis of RC structure with massive infill wall exposed to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.811-828
    • /
    • 2016
  • This study aims to present nonlinear time history analysis results of double leaf cavity wall (DLCW) reinforced concrete structure exposed to shake table tests. Simulation of the model was done by a Finite Element (FE) program. Shake table experiment was performed at the National Civil Engineering Laboratory in Lisbon, Portugal. The results of the experiment were compared with numeric DLCW model and numeric model of reinforced concrete structure with unreinforced masonry wall (URM). Both DLCW and URM models have two bays and two stories. Dimensions of the tested structure and finite element models are 1:1.5 scaled according to Cauchy Froude similitude law. The URM model has no experimental results but the purpose is to compare their performance level with the DLCW model. Results of the analysis were compared with experimental response and were evaluated according to ASCE/SEI 41-06 code.

Experimental vs. theoretical out-of-plane seismic response of URM infill walls in RC frames

  • Verderame, Gerardo M.;Ricci, Paolo;Di Domenico, Mariano
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.677-691
    • /
    • 2019
  • In recent years, interest is growing in the engineering community on the experimental assessment and the theoretical prediction of the out-of-plane (OOP) seismic response of unreinforced masonry (URM) infills, which are widespread in Reinforced Concrete (RC) buildings in Europe and in the Mediterranean area. In the literature, some mechanical-based models for the prediction of the entire OOP force-displacement response have been formulated and proposed. However, the small number of experimental tests currently available has not allowed, up to current times, a robust and reliable evaluation of the predictive capacity of such response models. To enrich the currently available experimental database, six pure OOP tests on URM infills in RC frames were carried out at the Department of Structures for Engineering and Architecture of the University of Naples Federico II. Test specimens were built with the same materials and were different only for the thickness of the infill walls and for the number of their edges mortared to the confining elements of the RC frames. In this paper, the results of these experimental tests are briefly recalled. The main aim of this study is comparing the experimental response of test specimens with the prediction of mechanical models presented in the literature, in order to assess their effectiveness and contribute to the definition of a robust and reliable model for the evaluation of the OOP seismic response of URM infill walls.

잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가 (Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class)

  • 최호
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.41-50
    • /
    • 2009
  • 지진피해를 입은 건물의 주된 관심사는 건물에 남아 있는 내진성능 및 여진에 대한 안전성을 판단하는데 있다. 따라서 지진피해를 입은 지역 사회의 조속한 복귀를 위해서는 건물의 잔존내진성능 평가방법을 확립해 두는 것이 필수적이다. 본 연구에서는 무보강 조적채움벽체를 갖는 RC 건물의 잔존내진성능 평가방법 개발을 주목적으로, 전형적인 학교건물을 대상으로 축력레벨을 변수로 한 실스케일, 단층 1스팬 실험체를 제작하여 정적 반복가력실험을 실시하였다. 실험 중 잔존내진성능을 판정하는데 유용한 정보 중 하나인 잔류균열폭을 상세히 측정하였다. 본 논문에서는 잔류균열폭과 잔존내진성능과의 관계에 대해서 실험적, 해석적으로 검토하고 잔존내 진성능 평가를 위한 각 손상도 레벨에 대응하는 내진성능 저감계수를 제안한다.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.