• Title/Summary/Keyword: US-PCS

Search Result 40, Processing Time 0.03 seconds

Implementation of Dielectric Duplexers and Bandpass Filters for K-PCS and US-PCS Bands (K-PCS와 US-PCS 대역용 유전체 듀플렉서와 밴드패스 필터 구현)

  • Choi, U-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1433-1438
    • /
    • 2011
  • Relative attenuations of Tx and Rx in K-PCS and US-PCS duplexers were about -60dB and -65dB, -51dB and -53dB, respectively. In the case of Rx and Tx in K-PCS and US-PCS bandpass filters, relative attenuations were about -40dB and -14dB, -5dB and -10dB, respectively. From the aboved results, the relative affect between Tx and Rx in K-PCS bands was smaller than that of US-PCS bands. Also, the various capacitances of passband were important role to determine the characterics of bandpass filter.

Design and Implementation of a MIMO Antenna for LTE700/2300/2500/PCS/Wibro/Bluetooth/Wimax Mobile Handset

  • Hong, Yeon-Chan;Lee, Seong-Ha;Yang, Woon-Geun
    • Journal of IKEEE
    • /
    • v.16 no.3
    • /
    • pp.159-166
    • /
    • 2012
  • In this paper, we designed and implemented the MIMO (Multiple-Input Multiple-Output) antenna for the mobile handset that could be used for multiple services. Simulation results were obtained using SEMCAD X by SPEAG based on the FDTD (Finite Difference Time Domain) Method which showed that S11 values were less than -6 dB (VSWR < 3) for LTE (Long Term Evolution) 700/2300/2500, K-PCS (Korea-Personal Communication Service : 1,750 ~ 1,870 MHz), US-PCS (US-Personal Communication Service : 1,850 ~ 1,990 MHz), Wibro (2,300 ~ 2,390 MHz), Bluetooth (2,400 ~ 2,483 MHz), and US-WiMAX (US-World interoperability for Microwave Access: 2,400 ~ 2,590 MHz) frequency bands. Measured results of the fabricated antenna also showed that it could be used for LTE 700/2300/2500, K-PCS, US-PCS, Wibro, Bluetooth, and US-WiMAX. services.

Design of a Triplexer for Mobile Communication (AMPS, GPS, US-PCS 대역용 Triplexer 설계)

  • 이재선;윤태순;김기병;이종철;박재영;고영준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.327-334
    • /
    • 2004
  • In this paper, a triplexer for Advanced Mobile Phone Service(AMPS), United States-Personal Communication Services(US-PCS), and Global Positioning System(CPS) is designed using L and C lumped elements. The triplexer shows the insertion loss of 0.6 ㏈, 1.1 ㏈, and 1.6 ㏈ for AMPS, US-PCS, and GPS bands, respectively. Also, it shows the attenuation characteristic of less than 18 ㏈, and the VSWR of less than 2.0 through the all pass-band.

A Low-profile Internal Antenna for GSM/GPS/DCS/US-PCS Mobile Handsets (GSM/GPS/DCS/US-PCS 대역 이동 단말기용 저자세 내장형 안테나)

  • Jung Woo-Jae;Jung Byung-Woon;Lee Hak-Yong;Lee Byungie
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.89-95
    • /
    • 2005
  • In this paper, a quad-band antenna for GSM/GPS/DCS/US-PCS handsets is proposed. The proposed antenna is low-profile for mounting in limited inner space of a handset. It consists of three open points with quarter wave length for multi-band operation. The ground plane below the patch is removed for wide-bandwidth without the variation of antenna size and the slot is added at the center of the patch for convenient matching in high frequency band. It provides a enough bandwidth within VSWR 3:1 at all bands. In addition, the measured peak gains are between -2.19 and 2.09 in anechoic chamber (10m$\times$6m$\times$4m).

  • PDF

Design of a Antenna with Enhanced Isolation for US-PCS Indoor Repeater (격리도가 향상된 US-PCS 대역 댁내용 중계기 안테나 설계)

  • Ahn Jung-Sun;Lee Jin-Sung;Jung Byung-Woon;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.9-18
    • /
    • 2005
  • This paper presents an antenna for US-PCS band indoor repeaters with enhancement of isolation. In common repeaters require an enough isolation to reduce the interferences between transmitted and received signals. Thus, it is investigated to improve front-to-back ratio of IBD(Integrated Balun Dipole) antenna which has a good linear polarization with a cavity or multi-cavity by using polarization diversity and aperture matching method. From the simulated and measured results, the antenna realized by using polarization diversity and aperture matching method has a VSWR below 1.5, gain over 8 dBi and enhanced isolation of 15$\~$24 dB in US-PCS band.

Design of a Multi-band Internal Antenna Using Half Wavelength Loaded Line Structure for Mobile Handset Applications (반파장 로디드 라인 구조를 이용한 이동 통신 단말기용 다중 대역 내장형 안테나 설계)

  • Shin Hoo;Jung Woo-Jae;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1179-1185
    • /
    • 2005
  • In this paper, novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880${\~}$960 MHz), GPS(1,575$\pm$10 MHz), DCS(1,710${\~}$1,880 MHz), US-PCS(1,850${\~}$l,990 MHz), and W-CDMA(1,920${\~}$2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line and a shorted monopole. A single shorting and feeding points are used and they are common to both antenna structures. By controlling a value of lumped inductance element between shorting point and ground plane, the antenna provides enough bandwidth to cover DCS, US-PCS, and W-CDMA respectively. When these higher bands are controlled by the values of inductance, resonant characteristics in GSM and GPS bands are maintained. In this work, maximum value of the inductor is limited within 3.3 nH to mitigate gain degradation from frequency tuning. As a result, measured maximum gain of antenna is -0.58${\~}$-0.30 dBi in the GSM band, -0.57${\~}$0.43 dBi in the GPS band and 0.38${\~}$1.15 dBi in the DCS/US-PCS/W-CDMA band. In higher band, the proposed antenna is certified that resonant frequency of about 240 MHz can be effectively controlled within gain variation of about 0.77 dB by simulation and measurement.

A Study on Coupling Coefficient and Resonant Frquency tunable Multi-band Internal Antenna (결합계수 및 주파수 튜너블 다중대역 내장형 안테나에 관한 연구)

  • Lee, Moon-Woo;Lee, Sang-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of antenna. Novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880~960 MHz), GPS($1,575{\pm}10MHz$), DCS(1,710~1,880MHz), US-PCS(1,850~1,990 MHz), and W-CDMA(1,920~2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line antenna and PIFA(Planner Inverted F Antenna). A single shorting and feeding points are used and they are common to both antenna structures. One of two inductors which is placed at each shorting post, one inductor is for adjusts amount of coupling, and the other controlling the resonant frequency in DCS/US-PCS/WCDMA bands. The inductance range for control of input impedance is between 0nH and 6.8nH, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.15dBi, 0.73dBi and 0.29dBi. The inductance range for control of the resonant frequency is between 1640MHz and 2500MHz, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.46dBi, 0.53dBi and 0.8dBi.

A Study on Characteristic of Filter Processing Using Kozeny-Carman Model and Measuring of PCS (PCS측정 기술과 Kozeny-Carman 모델을 이용한 여과공정 특성연구)

  • Ha, Sang An;Kim, Seung Ho;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.799-806
    • /
    • 2004
  • The filtration tests were made in cell with a low concentrated suspension. The suspension with a concentration of $C_{M}$=1.14~2.67$\cdot$$10^{-3}$ g/g consists of paper paint and water. The particles in the suspension have a particle size x<1${\mu}m$. The used depth filters consists of glass fibres, which are coated by polymer. The filtration in depth filters accorded in different mechanism, which were explained by physical models. The model which would be allows to make a promise of the filtration reaction. This filter media allows to get a high filtration time and a good separation rate. The Particle distribution is measured by a photon correlation spectroscopy(PCS). PCS measures particle sizes 0.03 ${\mu}m$${\mu}m$ in the suspension. The filtered suspension has a very low concentration Co{\le}5{\times}10_{-4}$ g/g of solid in sample. The PCS also informs us about the number of the particles in the suspension. The makes it possible to calculate the concentration of the in sample.