• Title/Summary/Keyword: USLE P factor

Search Result 11, Processing Time 0.024 seconds

Study of the USLE P factor in USLE Equation (범용토양유실량 산정공식 USLE P factor에 관한 연구)

  • Sung, Yunsoo;Lee, Doungjun;Han, Jeongho;Lee, Seoro;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.399-399
    • /
    • 2016
  • 현대 인류는 비약적인 경제성장으로 인하여 급격한 도시화와 산업화를 이루었다. 하지만 이러한 성장을 위해 수반되는 자원개발 및 생활환경조성으로 인한 토지개발이 진행되어 많은 양의 토양이 유실되고 있다. 토양유실을 관리하기 위해서는 모니터링을 통해 관리하는 방법과 모형을 통해 유실되는 토양의 양을 산정하여 관리방안을 제시하는 방법이 있다. 현재 전 세계적으로 사용되고 있는 범용토양유실량 산정공식(USLE)은 사용상의 편리성과 연간 토양유실량을 산정할 수 있는 이점이 있다. 뿐만 아니라 국내의 환경부에서는 USLE 공식을 적용한 '표토 침식 현황에 관한 고시'를 제정하여 유실되는 표토를 관리하고 있다. 하지만 USLE 공식을 구성하고 있는 인자 중 P factor는 경사도만을 고려하여 인자 값을 제시하고 있으며, 밭에 적용된 관리방법과 작물, 경운방법 등을 고려하지 않아 방법에 차이에 따른 발생되는 토양유실량에 차이가 발생하게 된다. 이러한 문제점을 고려하여 경작지의 경사도와 적용된 관리방안을 복합적으로 고려한 P factor 선정 체계가 필요한 시점이다. 따라서 본 연구에서는 실제 경작지 조사를 통해 경작지 별 관리방안과 경사도를 고려한 P factor를 제안하고자 한다. 관리방안과 경사도를 복합적으로 고려한 P factor를 제안하기 위해 선정된 유역은 강원도 양구군 해안면 유역과 자운리 유역, 안동시 임동면 반변천 상류 유역을 선정하여 위치하고 있는 밭에 대한 현장조사를 진행하였다. 조사항목은 경작지의 경사도, 재배작물, 관리방법, 경운방법 등을 조사하였으며, 이를 바탕으로 경사도와 관리방법을 복합적으로 고려한 P factor를 재산정 하였다. P factor를 재산정한 결과 대상 유역 내 밭에 적용된 관리방법과 경운방법, 재배작물의 차이로 인해 상이한 값이 산정되었다. 또한 기존 P factor와 재산정된 P factor를 사용하여 산정한 토양유실량의 차이가 약 17%정도 나타났다. 따라서 본 연구를 통해 재산정된 P factor는 토양유실에 직간접적으로 관여하는 조건들을 복합적으로 고려한 P factor로써 정확한 토양유실량을 산정하는데 기여할 것으로 판단되며, 본 연구를 바탕으로 전국단위 USLE P factor를 산정을 위한 추가적인 연구가 필요하다고 판단된다.

  • PDF

A Study to Define USLE P Factor from Field Survey in the Four Major Watersheds (현장조사를 통한 4대강 유역의 보전관리인자 산정 연구)

  • Yu, Nayoung;Shin, Minhwan;Seo, Jiyeon;Park, Youn Shik;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.37-44
    • /
    • 2018
  • Universal soil loss equation (USLE) had been employed to estimate potential soil loss since it was developed from the statewide data measured and collected in the United States. The equation had an origin in average annual soil loss estimation though, it was modified or improved to provide better opportunities of soil loss estimation outside the United States. The equation has five factors, most studies modifying them to adapt regional status were focused on rainfall erosivity factor and cover management factor. While the conservation practice factor (USLE P factor) is to represent distinct features in agricultural fields, it is challenging to find studies regarding the factor improvements. Moreover, the factor is typically defined using slopes. The factor defining approach was suggested in the study, the approach is a step-by-step method allowing USLE P factor definition with given condition. The minimum condition is slope and field location to provide an opportunity for using in any GIS software and to reflect regionally distinct features. If watershed location, slope, crop type, and mulching type on furrows are given, detailed definition of the factors are possible. The approach was developed from field survey in South-Korea, it is expected to be used for potential soil loss using USLE in South-Korea.

Evaluation on national environmental functionality of farming on soil loss using the USLE and replacement cost method (USLE모형과 대체법을 이용한 밭농사의 토양유실 저감기능 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol;Sung, Ki-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.361-371
    • /
    • 2002
  • Multifunctionality of agriculture has been an important international issue in terms of environmental benefits and public concerns. We calculated soil loss mass in national basis using the USLE, and attempted to evaluate its economical benefits by replacement cost method. Soil loss mass ranged from 1.4 to $18MT\;ha^{-1}\;yr^{-1}$ was fairly fitted to measured values for 13 cropping systems. In national basis, the factors in USLE were evaluated as: 429.4 for rainfall and runoff factor. R, 0.15 for soil erodibility factor, K, 1.72 for topographic factor, LS, 0.275 for cover and management factor, C, and 0.856 for support practice factor, P. The soil loss estimated from upland farming using the USLE was $26.1MT\;ha^{-1}\;yr^{-1}$, but soil loss from the bare soil was $110.8MT\;ha^{-1}\;yr^{-1}$, the ratio of soil loss from upland farming to bare soil was 23 percents. Function of reducing soil loss in comparison with the bare soil was $84.7MT\;ha^{-1}\;yr^{-1}$, of which national soil loss mass was 62.6 million MT per annum in south Korea. Agriculture economic replacement cost of soil loss reduction was 497 billion Wons(398 million dollars) for the cost of upland soil dressing. For conservational purposes to increase the environmental benefits of upland farming, the agricultural practice including contour, strip cropping, terracing and division ditches should be implemented.

Study on improvement of USLE P factor considering topography and cultivation method (지형 및 경작 방법을 반영한 범용토양유실량 산정공식 보전관리 인자 개선 연구)

  • Sung, Yunsoo;Lee, Gwanjae;Lee, Gwanjae;Han, Jeongho;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.163-172
    • /
    • 2019
  • The USLE P factor is a factor that varies depending on how croplands are managed and cultivated. Previous studies tend to overestimate the amount of soil loss because the factor was estimated from the slope of the watershed rather than the estimate of each cultivated land. In addition, the accuracy of estimating the soil loss is decreasing due to the fact that the factor is calculated without considering various conditions of cultivated land defined by Wishmeier and Smith. In order to overcome these problems, the Ministry of Environment (MOE) has proposed to establish the topsoil notification and calculate the P factor according to the cultivation methods (e.g., tillage system, support practice). However, it is required to apply the conditions proposed in the United States to domestic circumstances as it is causing uncertainties. Thus, this study selected the watersheds where soil loss was serious (Haean, Jaun, Banbyeoncheon), measured the actual slopes and slope lengths, and examined the crop, tillage systems, and support practice for each cultivated land. The P factors were recalculated considering the actual conditions of cultivated land and compared to the factors proposed by the previous studies (MOE). As the result of the study, the P factors calculated based on the previous studies were 0.8 ~ 1.0 in three watersheds. On the other hand, it is confirmed that there is a significant difference between the factors notified by MOE and estimated by reflecting the topography and cultivation methods in this study. Therefore, it is considered that the research for developing the cultivation conditions to calculate the P factor suitable for the domestic environment should be continuously carried out.

Assessment of Arable Soil Erosion Risk in Seonakdong River Watershed using GIS, RS and USLE (USLE 및 GIS, RS를 이용한 서낙동강 유역 농경지 토양침식 위험도 평가)

  • Ko, Jee-yeon;Lee, Jae-saeng;Jung, Ki-yul;Yun, Eul-soo;Choi, Yeong-dae;Kim, Choon-shik;Kim, Bok-jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.173-183
    • /
    • 2006
  • Purpose of this study was to estimate of soil erosion, which is related with crop productivity and water quality in watershed, in Seonakdong river watershed using USLE. The data set for USLE estimation were derived from detailed digital map(K factor), satellite imagery(C and P factors) and DEM(LS factor). The R factor was calculated by AWS data from Kimhae agricultural technology center. The soil loss from arable land was equivalent of 31.5% of total soil loss in Seonakdong river watershed. The soil loss amount of paddy field and upland were 2.8% and 97.2% of arable land, respectively, even in the area where paddy field was occupied much largely as 76.3%. The reason of large amount of soil loss from upland was that 30.4% of upland was distributed at "severe" and "very severe" soil erosion grade in watershed. The distribution of soil erosion grade during cropping season(May-Sept.) was similar to the annual soil loss. Soil erosion of non-cropping season(Oct.-Apr.) was small due to a low R factor. But, soil erosion grade of near mountain footslope areas showed severe and very severe even in non-cropping season.

A Study on the Estimation of Soil Erosion Quantity Using USLE in the Upper Region of ManKyoung River Basin (USLE를 활용한 만경강 상류지역에서의 토양침식량 산정에 관한 연구)

  • Lee, Jae Hyug;Shim, Eun Jeung;Lee, Yeon Kil;Kim, Tae Woong
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.317-328
    • /
    • 2012
  • The objects of this study are to perform appropriateness analysis of USLE(universal soil loss equation) model and to accumulate the data measured in field. The basin area of Bongdong station is $342.27km^2$. This study simulated sediment outflows in the basin and performed a comparative analysis of simulated outputs with actual measurement values. Also annual rainfall was used to calculate rainfall-runoff erosivity factor which can influence soil erosion. The calculation of annual average soil erosion was made by soil erosion maps. The maps with a resolution of ($30m{\times}30m$) were created by multiplication of factors(R, LS, K, C, P) from ArcView Map Calculator. In this paper, it was shown that soil erosion was not occur in the most of basin.

USLE/RUSLE Factors for National Scale Soil Loss Estimation Based on the Digital Detailed Soil Map (수치 정밀토양에 기초한 전국 토양유실량의 평가를 위한 USLE/RUSLE 인자의 산정)

  • Jung, Kang-Ho;Kim, Won-Tae;Hur, Seung-Oh;Ha, Sang-Keon;Jung, Pil-Kyun;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Factors of universal soil loss equation, USLE, and its revised version, RUSLE for Korean soils were reevaluated to estimate the national scale of soil loss based on digital soil maps. Rainfall erosivity factor, R, of 158 locations of cities and counties were spacially interpolated by the inverse distance weight method. Soil erodibility factor, K, of 1321 soil phases of 390 soil series were calculated using the data of soil survey and agri-environmental quality monitoring. Topographic factor, LS, was estimated using soil map of 1:25,000 scale with soil phase and land use type. Cover management factor, C, of major crops and support practice factor, P, were summarized by analyzing the data of lysimeter and field experiments for 27 years (1975-2001) in the National Institute of Agricultural Science and Technology. R factor varied between 2322 and 6408 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$ and the average value was 4276 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$. The average K value was evaluated as 0.027 MT hr $MJ^{-1}$ $mm^{-1}$. The highest K factor was found in paddy rice fields, 0.034 MT hr $MJ^{-1}$ $mm^{-1}$, and K factors in upland fields, grassland, and forest were 0.026, 0.019, and 0.020 MT hr $MJ^{-1}$ $mm^{-1}$, respectively. C factors of upland crops ranged from 0.06 to 0.45 and that of grassland was 0.003. P factor varied between 0.01 and 0.85.

Analysis of Soil Erosion Reduction Effect of Rice Straw Mat by the SWAT Model (SWAT 모형을 이용한 볏짚매트의 토양유실 저감효과 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Choi, Joong-Dae;Kim, Jong-Gun;Shin, Min-Hwan;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.97-104
    • /
    • 2010
  • The purpose of this study is to evaluate sediment yield reduction under various field slope conditions with rice straw mat. The Vegetative Filter Strip Model-W (VFSMOD-W) and Soil and Water Assessment Tool (SWAT) were used for simulation of sediment yield reduction effect of rice straw mat. The Universe Soil Loss Equation Practice factor (USLE P factor), being able to reflect simulation of rice straw mat in the agricultural field, were estimated for each slope with VFSMOD-W and measured soil erosion values under 5, 10, and 20 % slopes. Then with the regression equation for slopes, USLE P factor was derived and used as input data for each Hydrological Response Unit (HRU) in the SWAT model. The SWAT Spatially Distributed-HRU (SD-HRU) pre-processor module was utilized, moreover, in order to consider spatial location and topographic features (measured topographic features by field survey) of all HRU within each subwatershed in the study watershed. Result of monthly sediment yield without rice straw mat (Jan. 2000 - Aug. 2007) was 814.72 ton/month, and with rice straw mat (Jan. 2000 - Aug. 2007) was 526.75 ton/month, which was reduced as 35.35 % compared without it. Also, during the rainy season (from Jun. to Sep. 2000 - 2007), when without vs. with rice straw mat, monthly sediment indicated 2,109.54 ton and 1,358.61 ton respectively. It showed about 35.60 % was reduced depending on rice straw mat. As shown in this study, if rice straw mat is used as a Best Management Practice (BMP) in the sloping fields, rainfall-driven sediment yield will be reduced effectively.

Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields (고분자유기응집제 (Polyacrylamide)를 활용한 농경지 사면 토양유실 저감 효과 분석)

  • Kim, Minyoung;Choi, Yonghun;Lee, Sangbong;Kim, Hyunjeong;Kim, Seounghee;Kim, Youngjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.123-128
    • /
    • 2015
  • This study conducted a series of field experiments using soil conditioners, Polyacrylamide(PAM) and gypsum, to evaluate their effects in reducing sediment loss and surface runoff. In addition, the correction factors (K-alpha) for the erodibility factor (K) were determined to reflect the effects of PAM and PAM+gypsum in applying the USLE equation. Experimental erosion plots individually sized $10m^2$ (5 m long, 2 m wide and 1 m deep) have different slopes (10, 20 and 30%). Erosion plots were prepared for one control (C; no PAM and gypsum) and two treatments (P; PAM 20 kg/ha, PG; PAM 20 kg/ha+gypsum 3,000 kg/ha). The amounts of soil eroded and runoff were continuously monitored from July $1^{st}$ to Oct. $31^{st}$ in 2010 and compared to each other. The amount of sediment loss from a control plot was 399.2 ton/ha and the relative reduction of sediment loss were 11.4% and 33.4% for PAM-treated and PAM+gypsum treated plots, respectively. This study also determined the K-alpha factors in the USLE equation to account for the erosion control effectiveness of PAM and gypsum application. The K-alpha factors were calculated as 0.92 for PAM-treated plot and 0.69 for PAM+gypsum-treated plot. The findings of this study revealed that soil conditioners (PAM and gypsum) could play a significant role in controlling soil erosion. In addition, the modified USLE equation using the K-alpha could provide valuable information to make better decision on establishment of best management practice for soil erosion control in agriculture.

Determination of Model Parameters of Surface Cover Materials in Evaluation of Sediment Reduction and Its Effects at Watershed Scale using SWAT (토양유실 저감을 위한 지표피복 저감효과 변수 결정 및 SWAT 모형 유역단위 효과 분석)

  • Kum, Donghyuk;Jang, Chun Hwa;Shin, Min Hwan;Choi, Joong-Dae;Kim, Bomchul;Jeong, Gyo-Cheol;Won, Chul Hee;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.923-932
    • /
    • 2012
  • The purpose of this study was to determine parameters of surface cover materials and evaluation the effects on runoff and sediment reductions with rice straw mat with PAM at watershed scale using the SWAT model. In this study, 1) regression equation of CN for rice straw mat + PAM using SCS curve number method was developed, 2) the USLE P factor, being able to reflect simulation of rice straw mat + PAM in the agricultural field, was estimated for various slope scenarios with VFSMOD-w. Then regression equation for CN and USLE P factor were used as input data in the SWAT model. Assuming rice straw mat + PAM is applied to radish and potato fields, occupying 24% of agricultural fields at the study watershed. Result of direct runoff without rice straw mat + PAM was $65,964,368\;m^3,$ with rice straw mat + PAM, direct runoff was $65,637,336\;m^3$, $327,031.8\;m^3$ reductions compared without it. Also, result of sediment without rice straw mat + PAM was 163,531 ton, with rice straw mat + PAM, sediment was 84,779 ton, 78,752 ton reduction compared without it. This analysis showed that about 48% sediment reductions would be expected with rice straw mat + PAM. As shown in this study, rice straw mat + PAM would be used as an efficient site-specific BMPs to reduce runoff and sediment discharge from field.