• 제목/요약/키워드: UT-Marlowe

검색결과 3건 처리시간 0.016초

실리콘에 $BF_2$로 이온주입후에 Boron 이온의 일차원 및 이차원적인 분포해석 (Analysis of one- and two-dimensional boron distribution in implanted $BF_2$ silicon)

  • 정원채
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.99-100
    • /
    • 2006
  • $BF_2$ molecule 이온주입은 ULSI기술에 있어서 ultra shallow 정합형성을 위해고 P-MOS를 제작하는데 매우 유용한 기술이다. 주입된 boron 이온의 분포를 위해서 $0.05{\mu}m$ 나노스케일의 마스크사이즈의 패턴에 이온 주입한 결과를 일차원적인 분포해석을 위해서 UT-Marlowe tool을 사용하여 gauss 및 pearson 모델의 도핑분포를 나타내었다. 또한 이 데이터를 TSUPREM4에 적용하여 이차원적인 도핑분포와 열처리 후에 boron의 gauss 및 pearson의 모델의 도핑분포를 본 논문에 나타내었다.

  • PDF

낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링 (Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.750-758
    • /
    • 2016
  • For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.

SiGe에 이온 주입과 열처리에 의한 불순물 분포의 연구 (A Study of Dopant Distribution in SiGe Using Ion Implantation and Thermal Annealing)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.377-385
    • /
    • 2018
  • For the investigation of dopant profiles in implanted $Si_{1-x}Ge_x$, the implanted B and As profiles are measured using SIMS (secondary ion mass spectrometry). The fundamental ion-solid interactions of implantation in $Si_{1-x}Ge_x$ are discussed and explained using SRIM, UT-marlowe, and T-dyn programs. The annealed simulation profiles are also analyzed and compared with experimental data. In comparison with the SIMS data, the boron simulation results show 8% deviations of $R_p$ and 1.8% deviations of ${\Delta}R_p$ owing to relatively small lattice strain and relaxation on the sample surface. In comparison with the SIMS data, the simulation results show 4.7% deviations of $R_p$ and 8.1% deviations of ${\Delta}R_p$ in the arsenic implanted $Si_{0.2}Ge_{0.8}$ layer and 8.5% deviations of $R_p$ and 38% deviations of ${\Delta}R_p$ in the $Si_{0.5}Ge_{0.5}$ layer. An analytical method for obtaining the dopant profile is proposed and also compared with experimental and simulation data herein. For the high-speed CMOSFET (complementary metal oxide semiconductor field effect transistor) and HBT (heterojunction bipolar transistor), the study of dopant profiles in the $Si_{1-x}Ge_x$ layer becomes more important for accurate device scaling and fabrication technologies.