• Title/Summary/Keyword: UV Sensor

Search Result 238, Processing Time 0.022 seconds

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.91-95
    • /
    • 2006
  • High-density image sensors rave microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using UV transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.17-21
    • /
    • 2005
  • High-density image sensors have microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using W transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

Fabrication of UV Sensor Based on ZnO Hierarchical Nanostructure Using Two-step Hydrothermal Growth (2단계 수열합성을 이용한 ZnO 계층 나노구조 기반 UV 센서 제작)

  • Woo, Hyeonsu;Kim, Geon Hwee;Kim, Suhyeon;An, Taechang;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.187-193
    • /
    • 2020
  • Ultraviolet (UV) sensors are widely applied in industrial and military fields such as environmental monitoring, medicine and astronomy. Zinc oxide (ZnO) is considered as one of the promising materials for UV sensors because of its ease of fabrication, wide bandgap (3.37 eV) and high chemical stability. In this study, we used the hydrothermal growth of ZnO to form two types of ZnO nanostructures (Nanoflower and nanorod) and applied them to a UV sensor. To improve the performance of the UV sensor, the hydrothermal growth was used in a two-step process for fabricating ZnO hierarchical nanostructures. The fabricated ZnO hierarchical nanostructure improved the performance of the UV sensor by increasing the ratio of volume to surface area and the number of nanojunctions compared to one-step hydrothermal grown ZnO nanostructure. The UV sensor based on the ZnO hierarchical nanostructure had a maximum photocurrent of 44 ㎂, which is approximately 3 times higher than that of a single nanostructure. The UV sensor fabrication method presented in this study is simple and based on the hydrothermal solution process, which is advantageous for large-area production and mass production; this provides scope for extensive research in the field of UV sensors.

Comparison of UV images and Measurement of the Corona Discharge from Insulators using the UV Sensor (UV 센서를 이용한 절연애자의 코로나 방전 측정 및 자외선 이미지의 비교)

  • Kim, Young-Seok;Choi, Myeong-Il;Kim, Chong-Min;Bang, Sun-Bae;Shong, Kil-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.899-904
    • /
    • 2011
  • Inspections and diagnoses of corona discharge are important in order to prevent electrical faults of external insulation in power systems. This paper studies a measurement of ultra-violet rays(UV) strength of corona discharges on insulators using a UV sensor with an optic lens. The data has been compared with the images of a UV camera. The UV sensor estimated that DC voltage needed to be set at 700V for accurate data analysis of the properties of UV detected during corona discharge. UV was generated at 60kV when the corona discharge occurred. UV strength and images of UV increased at a high voltage. The image area of the UV using a UV camera and the detection of UV using a UV sensor have shown, that the polymer insulator mounted on a live part must be checked when the applied voltage on the good polymer insulator is greater than 37.5% of its breakdown voltage.

Cure real monitering sensor for UV curable thin epoxy film based on side-polished single mode fiber

  • Kim, Kwang-Taek;HwangBo, Sueng;Kang, Yong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.254-258
    • /
    • 2007
  • A novel cure sensor based on the side-polished single mode fiber has been proposed and demonstrated. Two different UV curable epoxies were used to verify the feasibility of the side-polished single mode fiber as a high sensitivity cure sensor. The volume change of the epoxy by UV curing results in a corresponding change of the refractive index. The sensor can be used to monitor the curing process, the refractive index variation and the volume change of epoxy in real time during the UV curing process. In addition, small birefringence of the epoxy film can be detected using the sensor.

Protection Method for Diameter-downsized Fiber Bragg Gratings for Highly Sensitive Ultraviolet Light Sensors

  • Seo, Gyeong-Seo;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.221-225
    • /
    • 2018
  • We suggested the use of miniature hollow glass tubes having high ultraviolet (UV) transmission characteristics for the protection of optical-fiber-type UV sensors. We have recently proposed a highly sensitive optical sensor in the UV spectral range, using a fiber Bragg grating (FBG) coated with an azobenzene polymer as the photoresponsive material. In this study, we used UV-transparent miniature glass tubes to protect the etched FBG with the azobenzene polymer coating. This technique will be very useful for protecting various fiber-based UV sensors.

A Study on the Signal Analysis of Corona Discharge on the Polymer Insulator using UV Sensor Array (UV 센서 어레이를 이용한 폴리머 애자의 코로나 방전 신호분석 연구)

  • Choi, Myeong-Il;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.16-20
    • /
    • 2014
  • To prevent any accident in electric power utilities, many researches for inspection and diagnosis deteriorations occurring by corona discharges have been continuously studying. Inspection and diagnosis of electric power utility is very important to prevent an accident. This paper studies a measurement of ultra-violet(UV) ray of corona discharges on polymer insulators using an UV sensor array with an optic lens. The detection of an UV signal begins at 60kV, which is about 37.5% of the breakdown voltage of the polymer insulator and the stronger the high voltage increased to the polymer insulator was. It can be determined that the polymer insulator mounted on a live part must be examined when the discharge risk exceeds approximately 40%. In conclusion, the status of power utilities can be checked using an UV sensor.

Improvement of Sensitivity in Porous Silicon Alcohol Gas Sensors by UV Light (자외선조사에 의한 다공질 실리콘 알코올 센서의 감도 개선)

  • Kim, Seong-Jin;Choe, Bok-Gil
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.676-680
    • /
    • 1999
  • To do breath alcohol measurement, a sensor is necessary that it can detect low alcohol gas concentration of 0.01% at least. In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to measure low alcohol gas concentration. The sensor using porous silicon layer has some sensitivity at room temperature by very large effective surface area, but there is still much room for improvement. In this experiment, we measured the capacitance of the sensor under 254 nm UV light on the porous silicon layer, in which alcohol solution was kept in a flask at 25, 35, and $45^{\circ}C$ by a heater. As the result, the improvement of sensitivity by illuminating UV light was observed. The increasing rate of the capacitance was shown to be double more than those measured under UV-off state. It is supposed that UV light activates response of the oriental and interfacial polarizations which have slow relaxation time for AC field.

  • PDF