• Title/Summary/Keyword: UV-B sensitive yeast

Search Result 3, Processing Time 0.022 seconds

Determination of Aflatoxins Using High-Performance Liquid Chromatography and Fluorescence or UV Absorbence Detection (HPLC에 의한 aflatoxin 분석법에 관한 연구 형광 및 자외선 흡광 검출의 비교)

  • 김종규;강회양;민경진
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1996
  • A comparison was made of two detection methods(UV absorbence detection and fluorescence detection with pre-column derivatization, with trifluoroacetic acid) coupled with HPLC for the simultaneous determination of aflatoxin $B_1, B_2, G_1$ and $G_2$. A good separation of the four aflatoxins was achieved on a reversed-phase $C_{18}$ column (30 cm x 3.9 mm) with methanol-acetonitrile-water(20+20+60) for absorbence detection or acetonitrile-water(25+75) for fluorescence detection at the flow rate of 1.0 ml/min. The calibration graphs were linear over the ranges 100 ppb-1 ppm for $B_1/G_1$ and 30~300 ppb for $B_2/G_1$ with absorbence detection, and 1~500 ppb for $B_1/G_1$ and 0.3~150 ppb for $B_2/G_2$ with fluorescence detection. The correlation coefficients were greater than 0.94 and 0.99 for absorbance detection and for fluorescence detection, respectively. The detection limit was 100 ng for $B_1/G_1$ and 30 ng for $B_2/G_2$ with absorbence detection, and 1 ng for $B_1/G_1$ and 0.3 ng for $B_2/G_2$ with fluorescence detection. Recovery rates of aflatoxin $B_1, B_2, G_1$ and $G_2$ added to yeast-extract sucrose broth medium were 66.6%, 59.4%, 67.5% and 59.2%, respectively, for absorbence detection and 82.9%, 71.5%, 80.0% and 69.3%, respectively, for fluorescence detection. The four aflatoxins in culture medium were quantitatively detected by the two methods. The aflatoxins in the rice sample were not detected the absorbence detection method, but were below 10 ppb using the fluorescence detection method. Analysis of aflatoxins by both the absorbence and fluorescence methods coupled with HPLC showed acceptable linearity and good recovery. The absorbence detection was less timeconsuming and safer for treatment. The fluorescence detection was more elective and sensitive though elevated $B_1$ and $G_1$ contents were determined from the TFA-induced conversion of $B_1$ to $B_{2a}$ and $G_1$ to $G_{2a}$.

  • PDF

Characterization of a New Gene Resistant to Alkylating Agents and 3-Aminobenzamide When Knocked Out in Fission Yeast (분열형 효모에서 유전자 결실에 의해 알킬화제와 3-AMINOBENZAMIDE에 저항성을 나타내는 새로운 유전자의 특성 분석)

  • 박종군;차재영;황성진;박세근;김미영;백성민;최인순;이정섭
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.219-225
    • /
    • 2002
  • The organization of eukayotic chromatin into specific conformation that are associated with transcription, replication, reapir and other nuclear processes are achieved via a series of DNA-protein interaction. These interactions are mediated by a range of DNA-binding domains such as SAP domain et at. By searching S. pombe genomic DNA database, we have found a gene named SAPuvs (SAP UV Sensitive) whose amino acid sequence is in part similar to SAP domain of Arabidopsis poly (ADP-ribose) polymerase and Ku7O. Knock-out cell of S. pombe SAPuvs gene was constructed using Ura4 as a selection marker. Survival analysis of knock-out cell indicated that treatment with UV significantly reduces the survival compared to wild type cell. Potentiation of MMS-induced cytotoxicity by 3AB post-treatment was observed in wild type cells, but not in knock-out cells. These data suggested that the protein encoded by SAPuvs gene is associated with chromatin reorganization during DNA repair.

Development of Multifunctional Natural Sunscreen (BHC-S) Having Sunscreening and Anti-wrinkle (주름개선 자외선 차단효과를 갖는 다기능성 천연 자외선 차단제(BHC-S) 개발)

  • Kim, Chul;Jeong, Sae Byeol;Im, Gyeong Hyeon;Gang, Myeong Hwan;An, Jun Hyuk;Kim, Jin Hee;Lee, Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.321-327
    • /
    • 2017
  • This study was carried out to develop a stable plant-derived natural sunscreen (BHC-S) that replaces the artificially synthesized organic sunscreen agents. The natural sunscreen (BHC-S), which is composed of peanut extract, Centella asiatica extract, and Ecklonia stolonifera extract, has the same level of ultraviolet shielding effect as PARSOL MCX-XR (OMC), which is a synthetic sunscreen. and has safety against skin. MultiFunctional effect such as and anti-wrinkle improvement. Thus, it can be used as raw material for natural cosmetics for ultraviolet ray blocking, and anti-aging.