• Title/Summary/Keyword: Ultimate strength

Search Result 1,944, Processing Time 0.03 seconds

Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model (스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측)

  • 지호석;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

Study on Applicability of Ultimate Strength Design Formula for Sandwich Panels - Application Cases of Double Hull Tanker Bottom Structures

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • In this study, ultimate strength characteristics of clamped sandwich panels with metal faces and an elastic isotropic core under combined in-plane compression and lateral pressure loads are investigated to verify the applicability of the ultimate strength design formula for ship structures. Alternative elastomer-cored steel sandwich panels are selected instead of the conventional bottom stiffened panels for a Suezmax-class tanker and then the ultimate strength characteristics of the selected sandwich panels are examined by using nonlinear finite element analysis. The change in the ultimate strength characteristics due to the change in the thickness of the face plate and core as well as the amplitude of lateral pressure are summarized and compared with the results obtained by using the ultimate strength design formula and nonlinear finite element analysis. The insights and conclusions developed in the present study will be useful for the design and development of applications for sandwich panels in double hull tanker structures.

Ultimate strength of stiffened plates with pitting corrosion

  • Rahbar-Ranji, Ahmad;Niamir, Nabi;Zarookian, Arvin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.509-525
    • /
    • 2015
  • Predicting residual strength of corroded plates is of crucial importance for service life estimation of aged structures. A series of nonlinear finite element method is employed for ultimate strength analysis of stiffened plates with pitting corrosion. Influential parameters, including plate thickness, type and size of stiffeners, pit depth and degree of pitting are varied and more than 208 finite element models are analyzed. It is found that ultimate strength is reduced by increasing pit depth to thickness ratio. Thin and intermediate plates have minimum and maximum reduction of ultimate strength with stronger stiffeners, respectively. In weak stiffener, reduction of ultimate strength in thin and intermediate plates depends on DOP. Reduction of ultimate strength in thick plates depends on thickness of plate and DOP. For intermediate plates, reduction for all stiffeners regardless of shape and size are the same.

A parametric study on effects of pitting corrosion on stiffened panels' ultimate strength

  • Feng, Liang;Hu, Luocun;Chen, Xuguang;Shi, Hongda
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.699-710
    • /
    • 2020
  • Pitting corrosion commonly shaped in hull structure due to marine corrosive environment seriously causes the deterioration of structural performance. This paper deals with the ultimate strength behaviors of stiffened ship panels damaged by the pits subjected to uniaxial compression. A series of no-linear finite element analyses are carried out for three stiffened panels using ABAQUS software. Influences of the investigated typical parameters of pit degree (DOP), depth, location and distribution on the ultimate strength strength are discussed in detail. It is found that the ultimate strength is significantly reduced with increasing the DOP and pit depth and severely affected by the distribution. In addition, the pits including their distributions on the web have a slight effect on the ultimate strength. Compared with regular distribution, random one on the panel result in a change of collapse mode. Finally, an empirical formula as a function of corrosion volume loss is proposed for predicting the ultimate strength of stiffened panel.

HAZ 연화부를 가진 TMCP형 고장력강판의 압축최종강도에 관한 연구 - 정사각형판

  • 백점기;고재용
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.69-75
    • /
    • 1990
  • In this paper, ultimate compressive strength of TMCP 50HT steel plates (yield stress .sigma.$_{o}$=36kg/mm$^{2}$) with HAZ softening is studied. Finite element method formulated by the author is applied to analyze the elasto-plastic large deflection behaviour of the plates. The influence of HAZ softening breadth, welding direction and slenderness ratio on the ultimate compressive strength is investigated. The results obtained are summarized as 1) With the increasing of the HAZ softening breadth, early plasticity on the plates is formed and then the ultimate compressive strength is decreased, in which about 8% of the ultimate strength for the plate with h/t=4(h: HAZ softening breadth, t: plate thickness) was reduced comparing with no HAZ softening. 2) The large decrease of the ultimate strength for the case that the welding direction is normal to the loading direction is occurred than the case that the welding direction is parallel to the loading direction. 3) The influence of HAZ softening on the ultimate compressive strength is serious for thick plates, while it may be negligible for thin plates.s.

  • PDF

Effect of stress-strain curve changing with equal channel angular pressing on ultimate strength of ship hull stiffened panels

  • Sekban, Dursun Murat;Olmez, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.473-484
    • /
    • 2021
  • Similar to other structures, ultimate strength values showing the maximum load that the structure can resist without damaging has great importance on ships. Therefore, increasing the ultimate strength values will be an important benefit for the structure. Low carbon steels used in ships due to their low cost and good weldability. Improving the ultimate strength values without interfering with the chemical composition to prevent of the weldability properties of these steels would be very beneficial for ships. Grain refinement via severe plastic deformation (SPD) is an essential strengthening mechanism without changing the chemical composition of metallic materials. Among SPD methods, equal channel angular pressing (ECAP) is one of the most commonly used one due to its capacity for achieving bulk ultrafine-grained (UFG) materials. When the literature is examined, it is seen that there is no study about ultimate strength calculation in ships after ECAP. Therefore, the mean purpose of this study is to apply ECAP to a shipbuilding low carbon steel to be able to achieve mechanical properties and investigate the alteration of ship hull girder grillage system's ultimate strength via finite element analysis approach. A fine-grained (FG) microstructure with a mean grain size of 6 ㎛ (initial grain size was 25 ㎛) was after ECAP. This microstructural evolution brought about a considerable increase in strength values. Both yield and tensile strength values increased from 280 MPa and 425 MPa to about 420 MPa and 785 MPa, respectively. This improvement in the strength values reflected a finite element method to determine the ultimate strength of ship hull girder grillage system. As a result of calculations, it was reached significantly higher ultimate strength values (237,876 MPa) compared the non-processed situation (192,986 MPa) on ship hull girder grillage system.

A Study on the Buckling & Ultimate Strength for Ship's Plate with Cutout (선체유공판의 좌굴 및 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.167-172
    • /
    • 2003
  • Place that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension. and thickness in this investigation. Used program applied ANSYS F.E.M code transformation finite element law that is mediocrity finite element analysis code.

  • PDF

Development of Buckling and Compressive Ultimate Strength Formulations for Rectangular Plate with Cutout (압축하중을 받는 유공판의 좌굴 및 최종강도 설계식 개발)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.237-244
    • /
    • 2004
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method.

  • PDF

The Ultimate Strength Analysis of the Welded Plate Elements having Resiual Stresses and Strains (잔류응력 및 변형을 고려한 용접평판부재의 최종강도 해석)

  • 김병일
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.331-340
    • /
    • 2000
  • For the rational and economic design of the structural elements of ships which is built using welding, the ultimate strength analyses of the plates having initial imperfections, such as welding residual stresses and strains, are needful. The welding deformation usually relied on approximative equations or based on expert's experience. But in this paper, for the thermal elasto-plastic analysis of plates, the finite element analysis was performed, based on initial strain method. In formulating the incremental analysis, unbalanced force terns were included. In the plastic domain during the incremental process, the 2nd order terns stress increment and yield stress increment were considered, so that time increment could be controlled for a more stable solution. The ultimate strength analysis program of the plates having initial imperfections was made. The ultimate strength analysis was carried out based on the results of the welding deformations of this paper. In the ultimate strength analysis the Rayleigh-Ritz method based on the minimum potential theory was used.

  • PDF

On the Ultimate Longitudinal Strength Assessment of Ships' Hull Structure (선체 선각구조의 최종 종강도 평가에 관한 연구)

  • Lee, Hun-Gon;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.340-350
    • /
    • 2006
  • This paper is concerned with a practical guide for the ultimate longitudinal strength assessments of ships' hull structure. Rigorous non-linear structural analysis for three tanker models has been carried out to examine the ultimate strength behavior. Formula of estimating the ultimate longitudinal strength has been proposed which is modified with the results of non-linear finite element analysis of hull girders. Computational reliability and accuracy of the large-scale non-linear finite element analysis and the proposed simplified formula are verified through comparing their results with that of 1/3 scale frigate model test and DNVs program. Additionally, the ultimate longitudinal strength for ten tanker models is compared with those by the method specified in the 2nd Draft of common structural rule for tankers, which is being developed by IACS.