• 제목/요약/키워드: Ultra-high-strength Steel

검색결과 292건 처리시간 0.035초

Development of Ultra-High Strength Galvannealed Steel Sheets

  • Fujita, Nobuhiro;Matsumura, Ken-Ichiro;Nonaka, Toshiki;Tomokiyo, Toshimasa
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.16-19
    • /
    • 2010
  • Application of ultra-high strength steel sheets is one of the most important methods to satisfy weight reduction and crash safety of a vehicle. Recently, there has been a trend to apply ultra-high strength steel sheets widely to underbody parts in which corrosion resistance is required. In this work, ultra-high strength galvannealed steel sheets with a tensile strength of 1180 MPa were developed. Newly developed ultra-high strength galvannealed steel sheets have comparable properties, such as mechanical properties, spot weldability, crashworthiness and adhesion of coatings, to conventional steel sheets.

초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향 (Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete)

  • 박정준;고경택;류금성;강수태;김성욱;한상묵
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

Structural Design of an Ultra High-rise Building Using Concrete Filled Tubular Column with 780 N/㎟ Class High-strength Steel and Fc150 N/㎟ High-strength Concrete

  • Matsumoto, Shuichi;Hosozawa, Osamu;Narihara, Hiroyuki;Komuro, Tsutomu;Kawamoto, Shin-ichiro
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.73-79
    • /
    • 2014
  • In recent years, the performance requested for which an ultra-high rise buildings is diversified. Large spans are designed in order to gain wide workspace. Column positions are shifted in middle stories to provide space different from neighboring floors. Moreover, in the bottom layers of the building, it is becoming more important to expand freedom to plan flexibility such as creating publically opened wide atria that gives attractive free space. Earthquake-proof criteria is also changing not only human life protection deign but also a design that allows functional continuity. In order to achieve thee needs, as one of technology, we have developed ultra-high strength concrete filled tubular (CFT) columns of the box section that combine ultra-high strength concrete with specified strength of $150N/mm^2$ and ultra-high strength steel material with tensile strength of $780N/mm^2$. In this paper, the outline of development of an ultra-high strength CFT column is reported. Also, the structural design of the ultra-high-rise building using the CFT columns is reported.

초고장력 강판을 적용한 Cowl Cross Member의 레이저 용접 적용에 관한 연구 (A Study on Laser Welding Application of the Cowl Cross Member for Ultra-High Strength Steel)

  • 박동환;윤재정;김근영
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.525-531
    • /
    • 2014
  • A cowl cross is a part of the car's instrument panel used to maintain the rigidity of the vehicle body side. The application of laser welding has the benefits of speed and thermal deformation compared to arc welding. An ultra-high strength steel sheet is used to reduce the weight of the vehicle body parts. Generally, formability of such a steel sheet is poor because its elongation is very low. For this reason, a method for cold forming of an ultra-high strength steel sheet is required. This paper describes how to improve the formability and weldability of the ultra-high strength steel sheet. Mechanical tests of this material were also performed to evaluate the welding properties of $CO_2$ (GMAW) and those of laser welding.

재료요인이 초고강도 강섬유 보강 시멘트 복합체의 압축강도에 미치는 영향 (The effect of material factors on the compressive strength of ultra-high strength Steel Fiber Reinforced Cementitious Composites)

  • 박정준;고경택;강수태;류금성;김성욱;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.288-291
    • /
    • 2004
  • In this paper, to make ultra-high strength SFRCC with the range of compressive strength 180MPa, it was investigated the constitute factors of ultra-high strength SFRCC influenced on the compressive strength. The experimental variables were water-cementitious ratio, replacement of silica fume, size and proportion of sand, type and replacement of filling powder, and using of steel fiber in ultra-high strength SFRCC. As a result, in water-binder ratio 0.18, we could make ultra-high strength SFRCC with compressive strength 180MPa through using of silica fume, quartz sand with below 0.5mm, filling powder and steel fiber.

  • PDF

Design of High Strength Concrete Filled Tubular Columns For Tall Buildings

  • Liew, J.Y. Richard;Xiong, M.X.;Xiong, D.X.
    • 국제초고층학회논문집
    • /
    • 제3권3호
    • /
    • pp.215-221
    • /
    • 2014
  • Ultra-high strength concrete and high tensile steel are becoming very attractive materials for high-rise buildings because of the need to reduce member size and structural self-weight. However, limited test data and design guidelines are available to support the applications of high strength materials for building constructions. This paper presents significant findings from comprehensive experimental investigations on the behaviour of tubular columns in-filled with ultra-high strength concrete at ambient and elevated temperatures. A series of tests was conducted to investigate the basic mechanical properties of the high strength materials, and structural behaviour of stub columns under concentric compression, beams under moment and slender beam-columns under concentric and eccentric compression. High tensile steel with yield strength up to 780 MPa and ultra-high strength concrete with compressive cylinder strength up to 180 MPa were used to construct the test specimens. The test results were compared with the predictions using a modified Eurocode 4 approach. In addition, more than 2000 test data samples collected from literature on concrete filled steel tubes with normal and high strength materials were also analysed to formulate the design guide for implementation in practice.

980MPa급 초고장력 강판을 이용한 자동차용 시트 레일 로어 부품의 성형공정 설계 (Process Design of Automobile Seat Rail Lower Parts using Ultra-High Strength, DP980 Steel)

  • 박동환;탁윤학;권혁홍
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.160-167
    • /
    • 2018
  • The purpose of this study is to develop a process for forming a MPa ultra-high strength steel sheet to reduce weight and improve product strength. To do this, we performed the initial process design based on empirical formulas in a handbook and experience of skilled engineers, and researched the effects of major process variables on spring back by analyzing the forming analysis and experimental results. This paper suggests an optimal process design of the seat rail lower parts, using a MPa ultra-high strength steel sheet. This satisfies the dimensional accuracy and strength requirements for the product.

하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도 (Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams)

  • 양인환;김경철;조창빈
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.283-290
    • /
    • 2015
  • 이 논문에서는 하이브리드 강섬유로 보강된 콘크리트의 부재의 휨강도를 예측하기 위한 수치해석기법을 제시하였다. 이를 위해 휨을 받는 하이브리드 강섬유 보강 콘크리트 실험과 수치해석연구를 수행하였다. 부피비 1.5%의 하이브리드 강섬유 보강 초고강도 콘크리트의 휨거동 특성 실험을 수행하였다. 강섬유보강 콘크리트의 인장연화특성은 구조적 거동에 매우 중요한 역할을 하며, 하이브리드 강섬유 보강 초고강도 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석에 의해 인장연화모델링을 수행하였다. 제안기법에 의한 콘크리트 보의 모멘트-곡률 수치해석결과를 실험결과와 비교하였으며, 수치해석결과와 실험결과는 전반적으로 잘 일치하고 있다. 따라서, 제안기법에 의해 강섬유 보강 초고강도 콘크리트 보의 휨강도를 합리적으로 예측할 수 있다고 판단된다.

초고강도 소재 성형시 형상 동결을 이용한 Seat Track 부품 개발 (The Development of Seat Track Parts Using Shape Freeze in UHSS)

  • 박동환;윤재정;문현덕;이태길
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.59-65
    • /
    • 2017
  • A seat track product is a car seat part that provides a base for vehicle seats. An ultra-high strength steel sheet is used to reduce the weight of vehicle body parts. However, the formability of an ultra-high strength steel sheet is poor because of its very low elongation and very high elastic deformation. For this reason, a new forming technology of an ultra-high strength steel sheet is required. The influence of spring-back of seat track parts on the shape freeze in forming processes was investigated to be solved by adjusting the appropriate tool design such as minus clearance between punch and die, and punch angle. This paper describes how to apply the spring-back prevention technique for improving shape freeze by using the ultra-high strength steel sheet with 980MPa to develop lightweight seat tract parts.

강섬유보강 초고강도 시멘트 모르터의 수축저감에 관한 연구 (A Study on the Shrinkage Reducing Properties of Steel Fiber Reinforced Ultra High Strength Cement Mortar)

  • 한동엽;허영선;배장춘;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.67-70
    • /
    • 2005
  • Ultra high strength concrete, nowadays, has been widely applied to construction of high-rise building. To improve ductility and mechanical properties, steel fiber is employed in UHSC. This study investigates practical application of expansive additives(EA) and shrinkage reducing agent(SRA), in order to secure volumetric stability and improved mechanical properties, such as autogenous shrinkage and dry shrinkage of steel-fiber-reinforced-ultra-high-strength-comet-mortar(FHSM). According to the test, individual addition of steel fiber does not affect shrinkage reduction, as expected. However FHSM, with combined addition of 5$\%$ of EA and 1$\%$ of SRA decreased 60$\%$ of autogenous shrinkage. It is considered that Proper combination of EA and SRA can secure the shrinkage resistance of FHSM.

  • PDF