• Title/Summary/Keyword: Ultrasonic motor

Search Result 326, Processing Time 0.03 seconds

Fabrication and Operation Characteristics of Linear Ultrasonic Motor (L$_1$-B$_4$모드 선형 초음파 전동기의 제작과 운전 특성)

  • 이명훈;김진수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.257-262
    • /
    • 2001
  • In this paper, a linear ultrasonic motor using piezoelectric ceramics was fabricated, and its operation characteristics were investigated. A linear ultrasonic motor using L$_1$-B$_4$model was composed of a stator and a rotor, and a stator was composed of piezoelectric ceramics and a elastic body. When applied frequency and voltage were 58.4kHz and 56V respectively, the feeding speed of the motor was 19.8 cm/s. A linear ultrasonic motor could be moved in left and right directions by the phase difference. Feeding speed and feeding force of a linear ultrasonic motor could be controlled by applied voltage. A linear ultrasonic motor had a droping torque-speed characteristic. The maximum efficiency of linear ultrasonic motor was 2.14%. Therefore, this linear ultrasonic motor can be expected to be used for a card-forwarding device, such as a card reader device and so on.

  • PDF

Lambda shape multiway moving ultrasonic linear motor (람다형 다방향 초음파 선형 모터)

  • Do, Young-Soo;Nam, Hyo-Duk;Kim, Young-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.263-265
    • /
    • 2007
  • An ultrasonic linear motor using lambda shape vibrators has been designed and fabricated. The multiway ultrasonic motors mainly consist of an lambda shape ultrasonic vibrator which generates elliptical motions in beat. The lambda shape ultrasonic linear motor use longitudinal and bending vibration mode. In order to high precision motion control and multiway moving, piezoceramics were adhered to lambda shape brass elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, The results have shown that the lambda shape ultrasonic linear motor can be moved multiwav by using the phase control. Close agreement between the FEM results and experimental results obtained for the lambda shape ultrasonic linear motor.

  • PDF

Fabrication of the Windmill Type Ultrasonic Its Characteristics of Torque and Bidirectional Revolution (풍차형 초음파 전동기의 제작과 토크 및 정$\cdot$역회전특성)

  • Kim, Young-Gyun;Kim, Jin-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.105-109
    • /
    • 2001
  • In this paper, the windmill type ultrasonic motors with 11.35 mm diameter, 2.87 mm thickness of metal endcap and 1.47 g weight were fabricated. Effects of slots and thickness on torque characteristic in the windmill type ultrasonic motor were investigated, when stator's slots were changed from 4, 6, 8 and thickness 0.15 mm, respectively. Specially designed metal endcaps with windmill shaped cutting can provide longitudinal and torsional displacements simultaneously as the ceramic disk vibrates radically. The windmill type ultrasonic motor has only three components: a stator element with windmill shape slotted metal endcap, a rotor and bearing. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The ultrasonic motor fabricated here was the windmill type ultrasonic motor operated by single-phase AC source. Bidirectional revolution using single-phase high frequency for driving the ultrasonic motor was presented.

  • PDF

A Study on the Driving Circuit of Piezoelectric Ultrasonic Motor Using PLL Technique (PLL을 이용한 압전 초음파 모터의 구동회로에 관한 연구)

  • ;;Sergey Borodin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • This paper describes control principles of the piezoelectric ultrasonic motor which is operated by the ultrasonic vibration generated by the piezoelectric element. The piezoelectric ultrasonic motor has excellent characteristics such as compact size, noiseless motion, low speed, high torque and controllability, and has been recently applied for the practical utilization in industrial, consumer, medical and automotive fields. In this paper, the design of two-phase push-pull inverter for driving the piezoelectric ultrasonic motor is described, and a new control method of automatic resonant frequency tracking using PLL(Phase-Locked Loop) technique is mainly presented. the experimental results by this inverter system for driving the piezoelectric ultrasonic motor are illustrated herein. The inverter system with PLL technique improved the speed stability of the piezoelectric ultrasonic motor.

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

Effect of Pressing Force Applied to a Rotor on Revolution Characteristics in the Windmill Type Ultrasonic Motor (풍차형 초음파 전동기의 회전자에 인가된 힘이 회전특성에 미치는 영향)

  • 김영균;김진수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.390-395
    • /
    • 2000
  • The ultrasonic motor have recently begun to be used for certain unique practical utilizations in the fields of industrial medical consumer and automotive applications. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The metal and ceramic composite component was used as the stator element to generate ultrasonic vibrations. The ultrasonic motor used here was the windmill type ultrasonic motor operated by single-phase AC source. The windmill type ultrasonic motors has only three components; a stator element of two windmill shape slotted metal endcaps a rotor and a bearing. In this paper a prototype motor with 11.35 mm diameter was fabricated then relationship between the pressing force applied to a rotor and the rotation characteristic of windmill type ultrasonic motor are investigated when stator’s slots was changed from 4, 6, 8 and thickness changed from 0.15, 0.20 mm, respectively. Optimum pressing force applied to a rotor in the six stators was 1.2 mN.

  • PDF

Development of Multi-DOF Ultrasonic Motor Using PZT (PZT를 이용한 다자유도 초음파 모터 개발)

  • Son, Young-Wan;Takemura, Kenjiro;Park, Shin-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.53-62
    • /
    • 2010
  • This study introduces about development of multi-DOF ultrasonic motor that are composed of a bar-shaped stator and a spherical rotor. The ultrasonic motor is a motor which is operated by vibrations over frequency of 20kHz. The multi-DOF ultrasonic motor will be developed by expanding the basic theory of existing 1-DOF ultrasonic motor. It can generate 3-DOF rotation of the rotor around perpendicular axes using 3 vibration modes of stator. By using finite element methods, the optimal dimension of stator is decided and made the components of stator. When we apply the multi-DOF ultrasonic motor composed of rotor and stator to the driving test system, it will be checked whether the motor can be driven at the direction of 3-DOF or not. And it is proposed how the simulation of square bar shaped multi-DOF ultrasonic motor is accomplished.

Optimal Design of Thin Type Ultrasonic Motor and Development of Driver (박형 초음파 모터의 최적설계 및 구동 드라이버 개발)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.976-981
    • /
    • 2009
  • This paper proposed optimal design and microcontroller driver for driving the thin-type ultrasonic motor. To find the optimal size of the stator, motions of the motor were simulated using ATILA by changing length, width and thickness of the ceramics. Two sinusoidal waves which have 90 degree phase difference were needed for driving the thin-type motor. The thin-type ultrasonic motor driver was composed of microcontroller(Atmega128), push-pull inverter, encoder and AD-converter. Microcontroller generates four square waves which have variable frequency and 25[%] duty ratio in $20{\sim}150$[kHz]. The output signals of microcontroller were converted to sine wave and cosine wave by push-pull inverter and were applied to the thin-type ultrasonic motor. The encoder and AD-converter were used for maintaining speed of the thin-type ultrasonic motor. The AD-converter controlled DC voltage of inverter in accordance with output signal of encoder. Using the driver, characteristics of the motor as speed and torque were measured.

Design and Characteristics of Ultrasonic Linear Motor Using $L_14-$B_4$Sandwich-type Vibrator ($L_14-$B_4$샌드위치형 진동자를 이용한 선형 초음파 모터의 설계 및 특성)

  • ;;;;Kenji Uchino
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.1025-1031
    • /
    • 2000
  • An ultrasonic linear motors consist of a slider and an ultrasonic vibrator which generates an elliptical oscillations. The ultrasonic linear motors mainly consist of an ultrasonic vibrator which generates elliptical oscillations. The ultrasonic linear motor fabricated in this paper was the use of the 1st longitudinal(L1) and 4th bending vibrations(B4). In order to low driving voltage and improve the life time of the ultrasonic motor, we used stacked piezoceramics. Stacked piezoceramics are adhered to aluminum elastic material. The finite element method was used to optimize dimension of ultrasonic vibrator and direction of vibratory displacement. As a result of estimating the characteristics of the ultrasonic linear motor, no-load velocity was 0.204[m/s] when applied voltage was 70[ $V_{rms}$] in resonance frequency.y.

  • PDF

Efficiency Improvement of Linear Ultrasonic Motor Using Arrangement for Magnification of Displacement (변위확대기구를 이용한 선형 초음파 전동기의 효율 개선)

  • 이명훈;우상호;김진수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.177-180
    • /
    • 2000
  • In this paper, we studied efficiency improvement of linear ultrasonic motor using projection. The principle of ultrasonic motor is to use an elliptic motion generated at the side of the vibrator, and the elliptic motion of the ultrasonic motor was obtained by complex oscillation of L$_1$-B$_4$ mode. As the experimental results, the efficiency of linear ultrasonic motor without projection was 1.52[%] when applied voltage was 56[V] in resonance frequency 58.4[kHz]. The efficiency of linear ultrasonic motor using projection was 3.36[%] when applied voltage was 56[V] in resonance frequency 58.4[kHz]. The efficiency was improved by projection.

  • PDF