• Title/Summary/Keyword: Undoped p-type ZnO film

Search Result 9, Processing Time 0.028 seconds

Photoluminescence properties of N-doped and nominally undoped p-type ZnO thin films

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.65-66
    • /
    • 2008
  • The realization and origin of p-type ZnO are main issue for photoelectronic devices based on ZnO material. N-doped and nominally undoped p-type ZnO films were achieved on silicon (100) and homo-buffer layers by RF magnetron sputtering and post in-situ annealing. The undoped film shows high hole mobility of 1201 $cm^2V^{-1}s^{-1}$ and low resistivity of $0.0454\Omega{\cdot}cm$ with hole concentration of $1.145\times10^{17}cm^{-3}$. The photoluminescence(PL) spectra show the emissions related to FE, DAP and defects of $V_{Zn}$, $V_O$, $Zn_O$, $O_i$ and $O_{Zn}$.

  • PDF

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

Alanysis of the Optical Properties of p-type ZnO Thin Films Doped by P based on Ampouele-tube Method (Ampoule-tube 법으로 Phosphorus를 도핑한 P형 ZnO 박막의 광학적 특성 분석)

  • Yoo, In-Sung;Oh, Sang-Hyun;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.145-146
    • /
    • 2006
  • The most Important research topic in the development of ZnO LED and LD is the production of p-type ZnO thin film that has minimal stress with outstanding stoichiometric ratio. In this study, Phosphorus diffused into the undoped ZnO thin films using the ampoule-tube method for the production of p-type znO thin films. The undoped ZnO thin films were deposited by RF magnetron sputtering system on $GaAs_{0.6}P_{0.4}$/GaP and Si wafers. 4N Phosphorus (P) was diffused into the undoped ZnO thin films in ampoule-tube which was performed and $630^{\circ}C$ during 3hr. We found the diffusion condition of the conductive ZnO films which had p-type properties with the highest mobility of above 532 $cm^2$/Vs compared with other studies PL spectra measured at 10K for the purpose of analyzing optical properties of p-type ZnO thin film showed strong PL intensity in the UV emission band around 365nm ~ 415nm and 365nm ~ 385nm.

  • PDF

A study on p-type ZnO thin film characterization and the stability from oxygen fraction variation ($O_2$ fraction 변화에 따른 undoped p-type ZnO 특성 및 안정화에 대한 연구)

  • Park, Hyeong-Sik;Jang, Kyung-Soo;Jung, Sung-Wook;Jeong, Han-Uk;Yun, Eui-Jung;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.143-143
    • /
    • 2010
  • In this study, we demonstrate that ZnO deposited onto $SiO_2$ substrates by magnetron sputtering produces p-type ZnO at higher $O_2$ pressure and n-type ZnO at lower $O_2$ pressure. We also report the effect of hydrogen peroxide ($H_2O_2$) on the stability of undoped ZnO thin films. The films were immersed in 30% $H_2O_2$ for 1 min at $30^{\circ}C$ and annealed in $O_2$at $450^{\circ}C$. The carrier concentration, mobility. and conductivity were measured by a Hall effect measurement system. The Hall measurement results for ZnO films untreated with $H_2O_2$ but annealed in $O_2$ indicate that oxygen fraction greater than ~0.5 produces undoped p-type ZnO films, whereas oxygen fraction less than ~0.5 produces undoped n-type ZnO films. This is attributed to the fact that the oxygen vacancies ($V_o$) decrease and the oxygen interstitials ($O_i$) or zinc vacancies ($V_{Zn}$) increase with increasing oxygen atoms incorporated into ZnO films during deposition and $O_2$ post-annealing.

  • PDF

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method (PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성)

  • Lee, Hong-Chan;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Phosphorus and Arsenic Diffusion used by Ampoule-tube Method into Undoped ZnO Thin Films and the Electrical Properties of p-type ZnO Thin Films (Undoped ZnO 박막에 Ampoule-tube 방법을 이용한 P와 As의 확산과 p형 ZnO 박막의 전기적 특성)

  • So, Soon-Jin;Wang, Min-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1043-1047
    • /
    • 2005
  • To investigate the electrical properties of the ZnO films which are interested in the next generation of short wavelength LEDs and Lasers, our ZnO thin films were deposited by RF sputtering system. At sputtering process of ZnO thin films, substrate temperature, work pressure respectively is $300^{\circ}C$ and 5.2 mTorr, and the purity of target is ZnO 5N. The thickness of ZnO thin films was about $2.1\;{\mu}m$ at SEM analysis after sputtering process. Phosphorus (P) and arsenic (As) were diffused into the undoped ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5\times10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAs_2$. Those diffusion was perform at 500, 600, and $700^{\circ}C$ during 3 hr. We found the diffusion condition of the conductive ZnO films which had n- and p-type properties. Our ZnO thin film has not only very high carrier concentration of above $10^{17}/cm^3$ but also low resistivity of below $2.0\times10^{-2}\;{\Omega}cm$.

Effect of Deposition and Annealing Temperature on Structural, Electrical and Optical Properties of Ag Doped ZnO Thin Films

  • Jeong, Eun-Kyung;Kim, In-Soo;Kim, Dae-Hyun;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 2008
  • The effects of the deposition and annealing temperature on the structural, electrical and optical properties of Ag doped ZnO (ZnO : Ag) thin films were investigated. All of the films were deposited with a 2wt% $Ag_2O-doped$ ZnO target using an e-beam evaporator. The substrate temperature varied from room temperature (RT) to $250^{\circ}C$. An undoped ZnO thin film was also fabricated at $150^{\circ}C$ as a reference. The as-grown films were annealed in temperatures ranging from 350 to $650^{\circ}C$ for 5 h in air. The Ag content in the film decreased as the deposition and the post-annealing temperature increased due to the evaporation of the Ag in the film. During the annealing process, grain growth occurred, as confirmed from XRD and SEM results. The as-grown film deposited at RT showed n-type conduction; however, the films deposited at higher temperatures showed p-type conduction. The films fabricated at $150^{\circ}C$ revealed the highest hole concentration of $3.98{\times}1019\;cm^{-3}$ and a resistivity of $0.347\;{\Omega}{\cdot}cm$. The RT PL spectra of the as-grown ZnO : Ag films exhibited very weak emission intensity compared to undoped ZnO; moreover, the emission intensities became stronger as the annealing temperature increased with two main emission bands of near band-edge UV and defect-related green luminescence exhibited. The film deposited at $150^{\circ}C$ and annealed at $350^{\circ}C$ exhibited the lowest value of $I_{vis}/I_{uv}$ of 0.05.

Characterization of arsenic doped p-type ZnO thin film (As 토핑된 p형 ZnO 박막의 특성 분석)

  • Kim, Dong-Lim;Kim, Gun-Hee;Chang, Hyun-Woo;Ahn, Byung-Du;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.53-54
    • /
    • 2006
  • Arsenic doped p-type ZnO thin films have been realized on intrinsic (100) GaAs substrate by RF magnetron sputtering and thermal annealing treatment. p-Type ZnO exhibits the hole concentration of $9.684{\times}10^{19}cm^3$, resistivity of $2.54{\times}10^{-3}{\Omega}cm$, and mobility of $25.37\;cm^2/Vs$. Photoluminescence (PL) spectra of As doped p-type ZnO thin films reveal neutral acceptor bound exciton ($A^{0}X$) of 3.3437 eV and a transition between free electrons and acceptor levels (FA) of 3.2924 eV. Calculated acceptor binding energy ($E_A$) is about 0.1455 eV. Thermal activation and doping mechanism of this film have been suggested by using X-ray photoelectron spectroscopy (XPS). p-Type formation mechanism of As doped ZnO thin film is more related to the complex model, namely, $As_{Zn}-2V_{Zn}$, in which the As substitutes on the Zn site, rather than simple model, Aso, in which the As substitutes on the O site. ZnO-based p-n junction was fabricated by the deposition of an undoped n-type ZnO layer on an As doped p-type ZnO layer.

  • PDF