• Title/Summary/Keyword: Unglazed collector

Search Result 14, Processing Time 0.031 seconds

Experimental Performance Comparison of Water Type Glazed and Unglazed PV-Thermal Combined Collectors (실험에 의한 Glazed형과 Unglazed형 액체식 PVT 집열기의 에너지성능 비교 분석 연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • Photovoltaic-thermal(PVT) collectors are a combination of photovoltaic modules with solar thermal collectors, forming one device that receives solar radiation and produces electricity and heat simultaneously. The PVT collectors can produce more energy per unit surface area than side by side PV modules and solar thermal collectors. There are two types of water type PVT collectors, depending on the existence of glass cover over PV module; glass-covered(glazed) PVT module, which produces relatively more thermal energy but has lower electrical yield, and uncovered(unglazed) PVT module, which has relatively lower thermal energy with somewhat higher electrical performance. In this paper, the experimental performance of two types of the water-based PVT combined collectors, glazed and unglazed, was analyzed. The electrical and thermal performances of the PVT combined collectors were measured in outdoor conditions, and the results were compared.

Study on Development of Subroutine based on TRNSYS for Unglazed Transpired Air Collector System (TRNSYS 기반 무창기공형 공기식 집열 시스템 부프로그램 개발에 관한 연구)

  • Park, J.U.;Lee, E.J.;Chung, M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.81-90
    • /
    • 2003
  • UTAC(unglazed transpired air collector) system has unique advantage for space heating and tempering ventilation air over the conventional collector system such as flat plate and vacuum collector. UTAC can improve radiative and convective loss due to nonglazed component and enhanced plate surface configuration. and heating energy and its equivalent green house emission performance can be improved from the use of this like collector in building application. The Option D Calibration simulation approach of IPMVP(International Performance Measurement and Verification Protocol) in ESCO businesses has been recommended to use of the calibrated computer modules like these Energy-10. DOE2.1E and TRNSYS(transient system simulation). This study is to develop subroutine type-203 of TRNSYS15.2 program and appraise thermal performance of UTAC. With newely addeded subroutine type-203. 1) Thermal performance of unglazed transpired collector could be possible based on dimensionless variables such as efficiency and heat exchanger effectiveness. and 2) Assessement of energy consists of solar useful and insulation saving for UTAC could be possible.

Performance Monitoring Study of Unglazed Transpired Solar Air Heating Module (무창 기공형 태양열 공기 난방 모듈 성능 모니터링 연구)

  • Kang, Eun-Chul;Hyun, Myung-Taek;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.67-72
    • /
    • 2002
  • Solar Air Systems (SAS) have unique advantages for space heating and tempering ventilation air. Air, unlike water, needs no protection against freezing nor are leaks damaging to the building structure or its contents. In contrast to glazed collector, unglazed steel solar collector may have higher efficiencies over glazed flat collector due to the absence of the glass. Therefore, the monitoring of SAS is so important to evaluate actual performance of SAS for right applications. This study is to provide a testing method with a movable test cell developed in KIER to evaluate the thermal performance of SAS based on international standard method ASHRAE 93-86, "Method of Testing to Determine the Thermal Performance of Solar Collectors". The monitoring tool used advanced technique LabVIEW 6i with portable notebook computer. Sample results have been obtained to access the performance of a reference and a target SAS module. The process and tool introduced here could be used to provide a performance verification data for future implementation study applications.

An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module (액체식 Unglazed PVT 복합모듈의 성능실험연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

Solar Air Heating System Thermal Performance Simulation and Verification (태양열 외기 난방 시스템의 열성능 시뮬레이션 및 검증 연구)

  • Kang, Dong-Un;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.152-157
    • /
    • 2001
  • UTC(Unglazed Transpired Collector) system has recently emerged as a new solar air heating technology. It is relatively inexpensive because it has not a glazed material. And it demonstrates efficient particularly for the applications in which larger wall area facilities with a high outdoor air requirement. Mathematical algorithm for UTC thermal modeling has been understood for further improvement of the system. EES and TRNSYS model of actual solar wall panel could be developed for computer simulations under other conditions. Computer models could be validated with the measured data from fixed outdoor test cell in KIER(Korea Institute of Energy Research). Major design parameters could be identified such as panel configuration and absorptivity and emissivity values for UTC design.

  • PDF

A Study on Performance of Flat Water-type PVT Modules According to Absorber Type (흡열판의 종류에 따른 Unglazed PVT 모듈의 성능 실험 분석)

  • Chun, Jin-Aha;Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.93-98
    • /
    • 2011
  • A photovoltaic/thermal(PVT)collector produces both thermal energy and electricity simultaneously. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A PVT module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The absorber collector plays an important function in PVT system. It cools down the PV module, while collecting the thermal energy produced in the form of hot water. The aim of this study is to compare the electrical and thermal performance of two different PVT collectors, one with the rectangular tube and the other with fully wetted absorber PVT collectors. For this paper, the PVT collectors with two different types of thermal absorber were made, and both the thermal and electrical performance of them were measured in outdoor, and the results were compared. The experimental results were analyzed that the thermal efficiency of the fully wetted absorber PVT collector is about 8.7% higher than the sheet-and-tube absorber PVT collector, and for the electrical efficiency, the fully wetted absorber PVT collector had about 7% higher than the rectangular tube absorber.

  • PDF

The Experimental Performance Comparison of a Water Type Glazed and Unglazed PV-Thermal Combined Modules (액체식 PVT 복합모듈의 유형별 성능 비교 분석)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.792-797
    • /
    • 2009
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that receives solar radiation and produces electricity and heat simultaneously. In general, two types of PVT can be classified: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively lower temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of two types of the PVT combined module(water type), glazed(glass-covered) and unglazed, was analyzed. The electrical and thermal performance of the PVT combined modules were measured in outdoor conditions, and the results were compared.

  • PDF

The Experimental Performance of Rectangular Tube Absorber PV/Thermal Combined Collector Module (사각튜브부착형 흡열판을 적용한 Unglazed PVT 복합모듈의 열적 전기적 성능분석)

  • Jeong, Seon-Ok;Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87-92
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT)module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. The performance of the PV/Thermal combined collector module is directly influenced by solar radiation that also has an effect on PV module temperature. It is also has believe that the energy performance of PV/T collector is related to absorber design as well as PV module temperature. The existing study has been paid to the PV/Thermal combined collector module with circle tube absorbers. The aim of this study is to analyze the experimental performance of the PV/Thermal combined collector rectangular tube absorbers according to solar radiation. The experimental result show that the average thermal and electrical efficiencies of the PVT collector were 43% and14.81% respectively. Solar radiation is one of the most influential factors to determine the energy performance of PVT collector, but from a certain level of solar radiation the PVT collector receives on, its efficiencies began to decrease.

  • PDF

A Experimental Performance of PVT Module With Fully Wetted Absorber (전면 액체식 흡열판을 적용한 PVT 모듈의 실험성능)

  • Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.121-126
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. In this paper, the experimental performance of water type unglazed PVT with fully wetted absorber was analyzed. The electrical and thermal performance of the unglazed PVT were measured in outdoor conditions, and the results were analyzed. The experimental results showed that the thermal efficiency of the PVT module was 42% average, and its electrical efficiencies were 15.2% and 14.2% average, respectively, for the mean fluid temperature of $10-20^{\circ}C$ and $21-30^{\circ}C$. Thermal efficiency depends on solar radiation, mean fluid temperature and ambient temperature. The PVT module temperature is related to the cooling effect of the PV module by the fluid of the absorber. The results proved that the electrical efficiency was higher when the mean fluid temperature was lower.

  • PDF

The Performance and Efficiency Analysis of a PVT System Compared with a PV module and a Solar collector (PVT 시스템의 PV 모듈 및 태양열 집열기 대비 성능 및 효율 비교분석)

  • Euh, Seung-Hee;Lee, Jeong-Bin;Choi, Yun-Sung;Kim, Dae-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.1-10
    • /
    • 2012
  • A photovoltaic/thermal (PVT)solar system is the solar technology that allows for simultaneous conversion of solar energy into both electricity and heat. This paper compared the performance of PVT system with a conventional PV module and solar collector and analyzed electrical and thermal efficiency of PVT system in terms of solar irradiance and inlet temperature of the working fluid. Based on the experimental data, thermal and electrical efficiencies of he glazed PVT system were57.9% and14.27% under zero reduced temperature condition which were lower by 13.6% than the solar thermal absorber plate and by 0.08% than the PV module respectively. For the unglazed PVT system it had lower thermal efficiency than the solar thermal absorber plate but higher electrical performance than the PV module due to the cooling effect by the working fluid. However, total efficiency of the glazed PVT system was72.2% which was higher than combined efficiencies of the solar collector and PV module. Besides, total efficiency of the PVT system would be much higher if calculated based on unit area.