• Title/Summary/Keyword: Unidirectional inverter

Search Result 14, Processing Time 0.034 seconds

Characteristic Comparison between PI and Hysteresis Voltage Control of High Voltage Unidirectional Inverter for Piezoelectric Load using FPGA (FPGA를 이용한 피에조 부하 구동용 고전압 단방향 인버터의 PI 및 히스테리시스 전압 제어 특성 비교)

  • Kim, Ki-Seok;Cho, Yong-Ho;Kim, Hyeong-Seop;Kang, Tae-Sam;Hong, Sun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.48-54
    • /
    • 2017
  • In this paper, hysteresis voltage control method is proposed to an unidirectional inverter control for piezoelectric load. Piezoelectric load has electrically RC characteristic, and is driven by the inverter to control the output voltage waveform. When controling the output waveform by PI control, appropriate gains need to be selected. However, hysteresis control may minimize the output distortion because it has maximum proportional gain. In addition, Hysteresis control algorithm has simple structure to realize and the response is fast. Although the switching frequency of the inverter by hysteresis control varies, the switching frequency for the piezoelectric load is lower than that by PI control for equivalent performance. In particular, on implementing the algorithm using FPGA, the algorithm can be implemented in fewer pabrics and the processing time can be reduced. The superiority of the proposed hysteresis voltage control was proved for piezoelectric load through simulation and experiment.

An Improved Soft-Switching Inverter with An Unidirectional Auxiliary Switch (단방향 보조 스위치를 갖는 개선된 소프트 스위칭 인버터)

  • Sohn, Se-Jin;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.376-377
    • /
    • 2010
  • In this paper, novel unidirectional auxiliary resonant commutated pole is proposed to improve the performance of zero-voltage soft-switching inverter. The proposed circuit keeps the advantages of the original soft-switching inverter, while providing more effective resetting capability in magnetizing current. Based on the advanced reset mechanism, auxiliary switches operate under a complete zero-current condition. The operating principle and steady-state analysis are presented theoretically, according to its operating modes. Accordingly, it proves the fact that the proposed unidirectional auxiliary resonant commutated pole breaks an unwanted magnetizing current loop effectively. The performance of the proposed circuit is verified by several simulation results.

  • PDF

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

A New Approach of BLDC Motor Using Unidirectional Current in the Driver Circuit and its Future Prospects

  • Yasuhiro, Komatsu;Zawawi, Syed Abdul Kadir
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.91-98
    • /
    • 2012
  • Climate change and other pollutions make a huge demand of environment friendly and high efficient motors especially Brushless DC (BLDC) motors. Generally, bidirectional energized BLDC motors are used widely; however, inverter devices used in the driver put fear of being effected by noise. This paper proposes unidirectional energized BLDC motor which utilizes asymmetrical H-bridge circuit as the driver circuit. The Minato motor is one of the pioneers in unidirectional energized system. The use of bar magnets in the rotor is one of the biggest disadvantages of the motor. We proposed using tabular magnets. The paper compares the power consumption and efficiency of the Minato motor and the proposed motor. During high speed rotation, undesirable armature current is generated that has a deceleration characteristic. This current lowers the motor's efficiency. In this paper, we propose the solutions and show comparison through equations of the copper loss ratio for the Minato and our proposed motors. The third motor, which has the highest efficiency, was discovered during examination of the equations.

A Family of Non-Isolated Photovoltaic Grid Connected Inverters without Leakage Current Issues

  • Ji, Baojian;Wang, Jianhua;Hong, Feng;Huang, Shengming
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.920-928
    • /
    • 2015
  • Transformerless solar inverters have a higher efficiency than those with an isolation link. However, they suffer from a leakage current issue. This paper proposes a family of single phase six-switch transformerless inverter topologies with an ac bypass circuit to solve the leakage current problem. These circuits embed two unidirectional freewheeling current units into the midpoint of a full bridge inverter, to obtain a freewheeling current path, which separates the solar panel from the grid in the freewheeling state. The freewheeling current path contains significantly fewer devices and poor performance body diodes are not involved, leading to a higher efficiency. Meanwhile, it is not necessary to add a voltage balancing control method when compared with the half bridge inverter. Simulation and experiments are provided to validate the proposed topologies.

Design of a hybrid power management system and cold start simulation in a fuel cell ship with PLECS

  • Oh, Jin-Seok;Kang, Young-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Currently, many studies on green ships are under way. Fuel cell (FC) ships are of interest as future low-emission, fuel-efficient vessels. In this paper, a hybrid power management system for an FC ship was designed. The system consists of an FC, a battery, a unidirectional DC/DC converter, a bidirectional DC/DC converter, a filter, an inverter, and a propulsion component. To design the system, we analyze electric sources and converters, and create PLECS models of hybrid power management system. Then, we check the cold start sequence and perform a simulation to understand the characteristics of the hybrid power management system in an FC ship.

5-T and 6-T thermometer-code latches for thermometer-code shift-register

  • Woo, Ki-Chan;Yang, Byung-Do
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.900-908
    • /
    • 2021
  • This paper proposes thermometer-code latches having five and six transistors for unidirectional and bidirectional thermometer-code shift-registers, respectively. The proposed latches omit the set and reset transistors by changing from two supply voltage nodes to the set and reset signals in the cross-coupled inverter. They set or reset the data by changing the supply voltage to ground in either of two inverters. They reduce the number of transistors to five and six compared with the conventional thermometer-code latches having six and eight transistors, respectively. The proposed thermometer-code latches were simulated using a 65 nm complementary metal-oxide-semiconductor (CMOS) process. For comparison, the proposed and conventional latches are adapted to the 64 bit thermometer-code shift-registers. The proposed unidirectional and bidirectional shift-registers occupy 140 ㎛2 and 197 ㎛2, respectively. Their consumption powers are 4.6 ㎼ and 5.3 ㎼ at a 100 MHz clock frequency with the supply voltage of 1.2 V. They decrease the areas by 16% and 13% compared with the conventional thermometer-code shift-register.

Development of Regenerative Inverter for Electric Railway Using Space Vector PWM (SVPWM을 이용한 전기철도용 회생 인버터 개발)

  • 백병산;정문구;김태완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • As a device that returns surplus energy, regenerated from trains to d.c. source, to a.c. system and reuses it, the thyristor Inverter has been widely used. Because the conventional thyristor inverter is a unidirectional phase-controlled device, it Is Impossible to control the power factor of its output. Moreover, harmonics emission is high and it needs to take a additional filter. In this paper, to solve the problems stated above, the inverter, which can control real and reactive power by adopting IGBT modules as switching elements and being controlled by means of space vector PWM, is developed. Considering high economical efficiency and reliability in order to apply to the system for commercial use, the developed inverter is equipped with fully digital control system and low pass filter, and reduces harmonics and has compact size. The detail description about the developed inverter is stated in various respects: design criteria, technical description, power circuits, control techniques, the developed system, test results, etc.

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF