• Title/Summary/Keyword: Universal Joint

Search Result 120, Processing Time 0.029 seconds

Strength and Fatigue Analysis of Universal Joint (유니버설조인트의 강도 및 피로 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 2011
  • Chassis part in automotive body is affected by fatigue load at driving on the ground. Universal joint on this part is influenced extremely by the fatigue load. Fatigue life, damage and natural frequency are analyzed at universal joint under nonuniform fatigue load. The york part at universal joint is shown with the maximum equivalent stress and displacement of 60.755 MPa and 0.21086 mm as strength analysis. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and 'Sine Wave'. The damage at loading life of 'SAE transmission' is the least among 3 types. The frequency of damage in case of 'Sine Wave' is 0.7 with the least among 3 fatigue loading life types but this case brings the most possible damage as 80% at the average stress of 0. Natural vibration at this model is analyzed with the orders of 1'st to 5'th and maximum frequency is shown as 701.73 Hz at 5'th order. As the result of this study is applied by the universal joint on chassis part, the prevention on fatigue damage in automotive body and its durability are predicted.

Comparisons of Kinematical Analysis for the Universal-joint System by Using Finite Rotations and Quaternions (유한회전과 4원수를 이용한 유니버설 조인트 시스템의 기구해석 비교)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • This paper deals with the comparison of analysis methodologies by applying both Euler angle and quaternion to observe the kinematical behavior of the universal joint system used as an automotive drive-shaft. At first, conventional approaches are applied to predict a kinematical behavior by introducing only Euler angles into the universal joint system, but turns out to be lack in consistency and reliability of the analysis. Then to overcome this deficiency in numerical analysis a different methodology is proposed by using quaternion in this system. Its corresponding advantage is discussed in terms of kinetic energy, rotational velocity and rotational displacement. The application of quaternions in the numerical experiment is shown to be a more useful and valid way of establishing the ideal analytical model of the universal joint system.

A Study on Design of a Damper for Reducing Torsional Vibrations of a Driveline with Universal Joints (Universal Joint를 갖는 구동축 시스템의 비틀림 진동 감소를 위한 Damper의 적정설계에 관한 연구)

  • Park, Bo-Yong;Song, Chang-Seop;Kang Hyo-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.137-145
    • /
    • 1991
  • A universal joint is a connecting device of two hinges which can transmit torque from one shaft to another at fixed or at varying angles of intersection. It has been used properly not only as rotational but also as intermittent motion. For the particular kinematics condition of a universal joint, torsional and bending vibrations are produced excessively in an elastic driveline. In this paper only the torsional vibration behavior of a driveline with universal joints is analyzed numerically with the discrete model and a design method of the dynamic vibration damper is proposed, in order to reduce torsional vibrations especially in resonance region as a result of parametric variation.

  • PDF

Kinematic Modeling of Distal Radioulnar Joint for Human Forearm Rotation (인간의 전완 회전을 위한 원위 요척골 관절의 기구학적 모델링)

  • Yoon, Dukchan;Lee, Geon;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • This paper presents the kinematic modeling of the human forearm rotation constructed with a spatial four-bar linkage. Especially, a circumduction of the distal ulna is modeled for a minimal displacement of the position of the hand during the forearm rotation from the supination to the pronation. To establish its model, four joint types of the four-bar linkage are, firstly, assigned with the reasonable grounds, and then the spatial linkage having the URUU (Universal-Revolute-Universal-Universal) joint type is proposed. Kinematic analysis is conducted to show the behavior of the distal radio-ulna as well as to evaluate the angular displacements of all the joints. From the simulation result, it is, finally, revealed that the URUU spatial linkage can be substituted for the URUR (Universal-Revolute-Universal-Revolute) spatial linkage by a kinematic constraint.

Concurrent Validity and Clinical Usefulness of Universal Plastic Goniometer for Hip Internal and External Rotation Range Measurement (고관절 내외회전 가동범위 검사에 대한 범용플라스틱 측각기의 동시타당도와 임상적 유용성)

  • Kim, Yong-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.99-105
    • /
    • 2018
  • PURPOSE: The aim of this study was to evaluate the concurrent validity and clinical usefulness of the universal plastic goniometer to measure the range of motion of the internal and external rotation of the hip joint using the three dimensional motion analysis which can analyze the joints and segment movements in the most objective and quantitative method. METHODS: Clinical and kinematic data were collected from thirty individuals using a universal plastic goniometer and a ten camera motion analysis system. Passive hip rotation range was obtained three trials for left and right hip joints using two measure methods simultaneously. RESULTS: There were significant differences between all matching measures of the two measures of internal and external rotation of the hip joint (p<.05). The relationship between the two tests for all measurements of the internal and external rotation of the hip was statistically significant with correlation coefficient form r=.87 to .96. (p<.01). CONCLUSION: Clinical measurement of the internal and external rotation of the hip using a universal plastic goniometer is effective to assess the hip condition. However, application of universal plastic goniometer requires careful attention in more accurate evaluation and research verification of the internal and external rotation of hip joint.

Stress and Life Evaluation of Universal Joint of Cardan Shaft for Waterjet System of Special-Purpose Vehicle (특수 목적 차량의 수상 추진체용 카단 샤프트의 유니버셜 조인트에 대한 응력 및 수명 평가)

  • Bae, Myungho;Lee, Taeyoung;Cho, Yonsang
    • Tribology and Lubricants
    • /
    • v.36 no.1
    • /
    • pp.34-38
    • /
    • 2020
  • The powertrain of the waterjet system of a special-purpose vehicle makes use of the cardan shaft, which is composed of universal joints and shafts. These universal joints, composed of spiders and needle roller bearings, have to be designed with consideration for the bending and compressive stresses of the spiders and needle roller bearings, and the rating lives of the bearings. The bending and compressive stresses of the spider and bearing of a universal joint have been studied by many researchers. However, to design a universal joint effectively, overall consideration of the different specifications of needle roller bearings is necessary. In this study, the bending stresses of spiders and compressive stresses of needle roller bearings are calculated to design universal joints for powertrain cardan shafts with different roller diameters of bearing. Furthermore, the rating lives of the needle roller bearings are predicted using the calculated basic dynamic load ratings of the bearings. As a result, roller diameters less than 𝜙2.5 mm are found suitable through an analysis of the bending stress of the spider. All compressive stresses between spider and bearing, regardless of roller diameter, satisfy the requirements. Moreover, roller diameters of more than 𝜙2 mm are found suitable for the required rating life.