• Title/Summary/Keyword: Unmanned Aerial Systems

Search Result 296, Processing Time 0.029 seconds

Automatic Landing Guidance Law Design for Unmanned Aerial Vehicles based on Pursuit Guidance Law (추적유도기법 기반 무인항공기 자동착륙 유도법칙 설계)

  • Yoon, Seung-Ho;Bae, Se-Lin;Han, Young-Soo;Kim, Hyoun-Jin;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1253-1259
    • /
    • 2008
  • This paper presents a landing controller and guidance law for net-recovery of fixed-wing unmanned aerial vehicles. A linear quadratic controller was designed using the system identification result of the unmanned aerial vehicle. A pursuit guidance law is applied to guide the vehicle to a recovery net with imaginary landing points on the desired approach path. The landing performance of a pure pursuit guidance, a constant pseudo pursuit guidance, and a variable pseudo pursuit guidance is compared. Numerical simulation using an unmanned aerial vehicle model was performed to verify the performance of the proposed landing guidance law.

A Study of Unmanned Aerial Vehicle Path Planning using Reinforcement Learning

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.88-92
    • /
    • 2018
  • Currently drone industry has become one of the fast growing markets and the technology for unmanned aerial vehicles are expected to continue to develop at a rapid rate. Especially small unmanned aerial vehicle systems have been designed and utilized for the various field with their own specific purposes. In these fields the path planning problem to find the shortest path between two oriented points is important. In this paper we introduce a path planning strategy for an autonomous flight of unmanned aerial vehicles through reinforcement learning with self-positioning technique. We perform Q-learning algorithm, a kind of reinforcement learning algorithm. At the same time, multi sensors of acceleraion sensor, gyro sensor, and magnetic are used to estimate the position. For the functional evaluation, the proposed method was simulated with virtual UAV environment and visualized the results. The flight history was based on a PX4 based drones system equipped with a smartphone.

Study on Revision of Aviation Safety act for RPAS (무인항공기 안전운용을 위한 항공안전법 개정방향에 대한 연구)

  • Hong, Hye-Jung;Han, Jae-Hyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.65-93
    • /
    • 2020
  • With the development of information and communication technology, the unmanned aerial vehicle industry began to attract attention as a new growth industry as it entered the fourth industrial revolution. As the size of the unmanned aerial vehicles and the scope of airspace vary from small drones to large unmanned aerial vehicles, the developed countries such as USA and Europe are developing plans for the integrated operation of manned and unmanned aerial vehicles. ICAO is also working on amendments to the relevant ICAO annexes to establish international standards and recommendations for unmanned aerial vehicles. Korea also needs to prepare for the integrated operation of manned and unmanned aerial vehicles that will come in the future, and for this purpose, it is necessary to review and revise the national regulation systems for the safe operation of unmanned aerial vehicles. This study analyzes the amendments of related annexes discussed on the Remotely Piloted Aircraft System (RPAS) pannel, and suggests the direction of revision of the Aviation Safety Act for the safe operation of unmanned aerial vehicles in comparison with the existing Aviation Safety Act.

A Study on Fault History Management Equipment of Unmanned Aerial Systems (무인항공기 체계의 고장이력관리장비에 관한 연구)

  • Soh, Nahyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 2019
  • This paper presents a study on Fault History Management Equipment (FHME) of Unmanned Aerial Systems (UAS). UAS comprise of various types of electronic equipment for high reliability design for flight safety. Consequently, it is mandatory for each on-board equipment to have its own Built-In-Test (BIT) function, because rapid fault-detections for UAS are necessary. FHME is developed for the purposes of display, storage and management of such BIT results on ground. This paper describes the outline, development requirements, design and verification process of FHME.

An Application Case of Systems Engineering Processes for a Small Unmanned Aerial Vehicle Development Project (소형 무인기 개발 사업에서 시스템엔지니어링 프로세스의 적용 사례)

  • Kim, Keun Taek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.1
    • /
    • pp.58-65
    • /
    • 2022
  • An application case of systems engineering (SE) processes for the small unmanned aerial vehicle (UAV) development project, which was funded by the Korean government during June 2017 ~ August 2020, is briefly presented in this paper. From the beginning to the end of the project, SE processes had been applied and managed by simple and intuitive aspects for the small/medium business companies joined with insufficient experiences of SE. And the specific considerations of the processes were focused to the missions of disaster and public safety purposes required from the government, such as identification, patrol, fire, rescue, etc. As a result, the project applied by the tailored SE processes had been rated of a good and higher accomplishment on the final evaluation, and then the related several programs were prepared successively for the other opportunities.

Navigation Performance Analysis Method for Integrated Navigation System of Small Unmanned Aerial Vehicles

  • Oh, Jeonghwan;Won, Daehan;Lee, Dongjin;Kim, Doyoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • Currently, the operation of unmanned aerial vehicle (UAV) is regulated to be able to fly only within the visible range, but in recent years, the needs for operation in the invisible area, in the urban area and at night have increased. In order to operate UAVs in the invisible area, at night, and in the urban area, a flight path for UAVs must be prepared like those operated by manned aircraft, and for this, it is necessary to establish an unmanned aircraft system traffic management (UTM). In order to establish the UTM, information on the minimum separation distance to prevent collisions with UAVs and buildings is required, and accordingly, information on the navigation performance of UAVs is required. In order to analyze the navigation performance of an UAV, total system error (TSE), which is the difference between the planned flight path and the actual location of the UAV, is required. If the collected data are insufficient and classification according to integrity, independence, and direction is not performed, accurate navigation performance is not derived. In this paper, propose a navigation performance analysis method of UAV that is derived TSE using flight data and modeled with normal distribution, analyze performance.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.

Development of Flight Control Application for Unmanned Aerial Vehicle Employing Linux OS (리눅스 기반 무인항공기 제어 애플리케이션 개발)

  • Kim Myoung-Hyun;Moon Seungbin;Hong Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2006
  • This paper describes UAV (Unmanned Aerial Vehicle) control system which employs PC104 modules. It is controlled by application program based on Linux OS. This application consists of both Linux device driver in kernel-space and user application in user-space. In order to get data required in the unmanned flight, external devices are connected to PC104 modules. We explain how Linux device drivers deal with data transmitted by external devices and we account for how the user application controls UAV on the basis of data processed in the device driver as well. Furthermore we look into the role of GCS (Ground Control Station) which is to monitor the state of UAV.

A Study on Test Environment and Process for Interface Verification of Unmanned Aerial Systems (무인항공기 체계 연동검증을 위한 시험환경 및 검증절차에 관한 연구)

  • Cho, Sunme
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.40-47
    • /
    • 2019
  • This paper proposes the environment construction and test method of system integration laboratory (SIL) and system integration test (SIT) for verification of interface between onboard equipment and ground control equipment of unmanned aerial systems (UAS). This research also describes the interface environment between subsystems built in SIL and verification methods for the systems' operation logic through simulated flights. Similarly, the paper handles the ground integration test process of UAS in the real testing environments.

A Study on the System Configuration and Communication Equipment Operation for Mission and Control of Small UAV (소형 무인항공기의 임무 및 제어를 위한 시스템 구성과 통신 장비 운용에 대한 연구)

  • Ha, Young-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.118-124
    • /
    • 2019
  • As Unmanned Aerial Vehicles technology has been widespread, various types of unmanned aircraft and mission equipment have been developed in line with mission diversification. Especially in Korea, small unmanned aerial vehicles have been actively developed. In addition, flight control system and mission equipment interface system for effective control of small unmanned aerial vehicles, efficient communication system configuration and operation for transmission to ground operated systems by processing data are required. This paper addresses efficient system structure and operation of communication equipment for missions and control of small unmanned aerial vehicles.