• 제목/요약/키워드: Unsteady Viscous Flow

검색결과 149건 처리시간 0.029초

상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발 (DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Unsteady Viscous Flow over Elliptic Cylinders At Various Thickness with Different Reynolds Numbers

  • Kim Moon-Sang;Sengupta Ayan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.877-886
    • /
    • 2005
  • Two-dimensional incompressible Navier-Stokes equations are solved using SIMPLER method in the intrinsic curvilinear coordinates system to study the unsteady viscous flow physics over two-dimensional ellipses. Unsteady viscous flows over various thickness-to-chord ratios of 0.6, 0.8, 1.0, and 1.2 elliptic cylinders are simulated at different Reynolds numbers of 200, 400, and 1,000. This study is focused on the understanding the effects of Reynolds number and elliptic cylinder thickness on the drag and lift forces. The present numerical solutions are compared with available experimental and numerical results and show a good agreement. Through this study, it is observed that the Reynolds number and the cylinder thickness affect significantly the frequencies of the force oscillations as well as the mean values and the amplitudes of the drag and lift forces.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발 (DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW ANALYSIS)

  • 정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.135-139
    • /
    • 2005
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoil including relative motion. Validation were made by comparing the predicted results with those of experiments or other researcher's numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

  • PDF

급 출발하는 정방실린더 후류의 비정상 점성유동의 초기거동 (The Early Stage Behavior of Unsteady Viscous Flows past an Impulsively Started Square Cylinder)

  • 진동식;정재훈;안철오;이상환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.259-264
    • /
    • 2001
  • High-resolution simulations using vortex methods have been performed for simulating unsteady viscous flows around an impulsively started square cylinder. In order to investigate the phenomenon from laminar to transition flow, simulations are performed for Reynolds numbers 25, 50, 150 and 250. At extremely low Reynolds number, flow around a square cylinder is known to separate at the trailing edges rather than the leading edges. With an increase of Reynolds number, the flow separation at the leading edges will be developed. The main flow characteristics of developing recirculation region and separations from leading and trailing edges are studied with the unsteady behavior of the wake after the cylinder starts impulsively. A notable change in the flow evolution is found at Re=150, that is, it is shown that the flow separations begin at both leading and trailing edges of the square cylinder. On the other hand, when Re=250, the strong secondary vorticity from the rear surfaces of the square cylinder increases the drag coefficient as the primary vortex layer is pushed outwards. The comparisons between results of the present study and experimental data show a good consistency.

  • PDF

Numerical Analysis of Unsteady Viscous Flow Through a Weis-Fogh Type Ship Propulsion Mechanism Using the Advanced Vortex Method

  • Ro Ki-Deok;Kang Myeong-Hun;Kong Tae-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.769-778
    • /
    • 2005
  • The velocity and pressure fields of a ship's Weis-Fogh type propulsion mechanism are studied in this paper using an advanced vortex method. The wing (NACA0010 airfoil) and channel are approximated by source and vortex panels. and free vortices are introduced away from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from an integral, based on the instantaneous velocity and vorticity distributions in the flow field. Two-dimensional unsteady viscous flow calculations of this propulsion mechanism are shown. and the calculated results agree qualitatively with the measured thrust and drag due to un-modeled large fluctuations in the measured data.

동심환내의 회전체 진동에 의한 부가질량, 유체감쇠계수 및 유체탄성계수에 관한 연구 (Added Mass, Viscous Damping and Fluid-stiffness Coefficients on the Rotating Inner Cylinder in Concentric Annulus)

  • 심우건;박진호;김기선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.695-701
    • /
    • 2001
  • While a rotating inner cylinder executes a periodic translational motion in concentric annulus, the vibration of the rotating inner cylinder is induced by fluid-dynamic forces acting on the cylinder. In the previous study related to journal bearing, the unsteady viscous flow in the annulus and the fluid-dynamic forces were evaluated based on a numerical approach. Considering the dynamic-characteristics of unsteady viscous flow, an approximate analytical method has been developed for estimating added mass, viscous damping and fluid-stiffness coefficients. For the study of flow-induced vibrations and related instabilities, it is of interest to separate the coefficients from the fluid-dynamic forces. The added-mass and viscous damping coefficients for very narrow annular configurations, as journal bearing. can be approximated by considering the gap ratio to the radius of inner cylinder, while the fluid-stiffness coefficient is related to the Reynolds number, the oscillatory Reynolds number and the gap ratio.

  • PDF

개선된 입자와법을 이용한 급 출발하는 실린더 주위의 비정상 점성 유동 시뮬레이션 (Simulations of the Unsteady Viscous Flow Around an Impulsively Started Cylinder Using Improved Vortex Particle Method)

  • 진동식;이상환;이주희
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.733-743
    • /
    • 2000
  • We solve the integral representation of the Navier-Stokes equations in a lagrangian view by tracking the particles, which have vortex strengths. We simulate the unsteady viscous flow around an impulsively started cylinder using the vortex particle method. Particles are advanced via the Biot-Savart law for a lagrangian evolution of particles. The particle strength is modified based on the scheme of particle strength exchange. The solid boundary satisfies the no-slip boundary condition by the vorticity generation algorithm. We newly modify the diffusion scheme and the boundary condition for simulating an unsteady flow efficiently. To save the computation time, we propose the mixed scheme of particle strength exchange and core expansion. We also use a lot of panels to ignore the curvature of the cylinder, and not to solve the evaluation of the surface density. Results are compared to those from other theoretical and experimental works.

캐비티 내 고 점성유체의 비정상 흔합대류에 관한 수치해석적 연구 (Numerical Study of Unsteady Mixed Convection in a Cavity with High Viscous Fluid)

  • 배대석
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.11-17
    • /
    • 2009
  • A numerical study of unsteady mixed convection in a cavity with high viscous fluid is presented. Finite volume method was employed for the discretization and PISO algorithm was used for calculating pressure term. The parameters governing the problem are the Rayleigh number ($10^3\;{\leq}\;Ra\;{\leq}\;10^5$), the Reynolds number (0 < Re $\leq$ 1), and the aspect ratio (0.5 $\leq$ AR $\leq$ 2). The fluid used is silicon oil, a high prandtl number fluid, Pr = 909.1. The results show velocity vectors and temperature distributions. It is found that the periodic flows in a cavity are observed at very low Reynolds numbers, and the period of periodic flow decreases with increasing Reynolds and Rayleigh numbers, and increases with increasing aspect ratio. Also, the Reynolds number range of periodic flow increases with increasing Rayleigh numbers and aspect ratio.

  • PDF

Unsteady Lift and Drag Forces Acting on the Elliptic Cylinder

  • Kim Moon-Sang;Park Young-Bin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권1호
    • /
    • pp.167-175
    • /
    • 2006
  • A parametric study has been accomplished to figure out the effects of elliptic cylinder thickness, angle of attack, and Reynolds number on the unsteady lift and drag forces exerted on the elliptic cylinder. A two-dimensional incompressible Navier-Stokes flow solver is developed based on the SIMPLER method in the body-intrinsic coordinates system to analyze the unsteady viscous flow over elliptic cylinder. Thickness-to-chord ratios of 0.2, 0.4, and 0.6 elliptic cylinders are simulated at different Reynolds numbers of 400 and 600, and angles of attack of $10^{\circ},\;20^{\circ},\;and\;30^{\circ}$. Through this study, it is observed that the elliptic cylinder thickness, angle of attack, and Reynolds number are very important parameters to decide the lift and drag forces. All these parameters also affect significantly the frequencies of the unsteady force oscillations.