• Title/Summary/Keyword: Unstructured hybrid meshes

Search Result 22, Processing Time 0.024 seconds

INTRODUCTION TO UNSTRUCTURED HYBRID MESH BASED FLOW SIMULATION TECHNIQUE (비정렬 혼합격자 기반 유동해석 기법 소개)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.112-115
    • /
    • 2009
  • In this paper, flow simulation algorithms for utilizing unstructured hybrid meshes are introduced. First, various types of meshes are introduced. Advantages and disadvantages of each type of meshes are discussed. Unstructured hybrid mesh approach, that is best suited for high speed viscous flow simulation, is presented. Lastly, various types of flow simulations using unstructured hybrid meshes are introduced.

  • PDF

NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

Development of a 2-dimensional Flow Solver using Hybrid Unstructured and Adaptive Cartesian Meshes (비정렬 및 적응 직교격자를 이용한 2차원 혼합격자계 유동해석 코드 개발)

  • Jung, M.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.294-301
    • /
    • 2011
  • A two-dimensional hybrid flaw solver has been developed for the accurate and efficient simulation of steady and unsteady flaw fields. The flow solver was cast to accommodate two different topologies of computational meshes. Triangular meshes are adopted in the near-body region such that complex geometric configurations can be easily modeled, while adaptive Cartesian meshes are, utilized in the off-body region to resolve the flaw more accurately with less numerical dissipation by adopting a spatially high-order accurate scheme and solution-adaptive mesh refinement technique. A chimera mesh technique has been employed to link the two flow regimes adopting each mesh topology. Validations were made for the unsteady inviscid vol1ex convection am the unsteady turbulent flaws over an NACA0012 airfoil, and the results were compared with experimental and other computational results.

  • PDF

Numerical Comparisons Between URANS and Hybrid RANS/LES at a High Reynolds Number Flow Using Unstructured Meshes

  • You, Ju-Yeol;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • In the present study, the turbulent flow fields around a circular cylinder at $Re=3.6{\times}10^6$ were investigated based on an unstructured mesh technique, and the comparisons between URANS(S-A, SST) and hybrid RANS/LES(DES, SAS) methods for the simulation of high Reynolds number flow have been conducted. For this purpose, unsteady characteristics of vortex shedding and time-averaged quantities were compared. A quasi-steady solution-adaptive mesh refinement was also made for the URANS and hybrid RANS/LES approaches. The results showed that the simple changes in the turbulent length scale or source term of turbulent models made the flow fields less dissipative and more realistic in hybrid RANS/LES methods than the URANS approaches.

DES and RANS Simulations of Vortical Flows over a Slender Delta Wing on Unstructured Meshes (비정렬 격자계에서 삼각날개 주위의 와류 유동에 대한 DES 및 RANS 모사)

  • Lee, Hee-Dong;Jung, Mun-Seung;Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.47-50
    • /
    • 2008
  • The unsteady vortical flow over ONERA 70-degree delta wing was simulated using RANS and DES flow solvers on hybrid unstructured meshes. A study of time accuracy is accomplished to determine the effects of time step and number of iteration in pseudo-time stepping on numerical solutions. The grid size test is also performed to demonstrate that DES can be used to capture more accurately the unsteady vortical flow features over RANS simulation.

  • PDF

Turbulent Flow Calculations Using an Unstructured Hybrid Meshes (2차원 혼합격자를 이용한 난류유동 계산)

  • Kim J. S.;Oh W. S.;Kwon O. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.90-97
    • /
    • 1999
  • An implicit turbulent flow solver is developed for 2-D unstructured hybrid meshes. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by an implicit backward Euler time stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one equation model, which is coupled with wall function. The numerical method is applied for flows on a flat plate, the NACA 0012 airfoil, and the Douglas 3 element airfoil. The results are compared with experimental data.

  • PDF

Development of 3-D Flow Analysis Code Using Unstructured Grid System (II) - Code's Performance Evaluation - (비정렬격자계를 사용하는 3차원 유동해석코드 개발 (II) - 코드성능평가 -)

  • Kim, Jong-Tae;Kim, Jong-Eun;Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.1057-1064
    • /
    • 2005
  • A conservative finite-volume numerical method using unstructured meshes, which is developed by the authors, is evaluated for its application to several 2-D benchmark problems using a variety of quadrilateral, triangular and hybrid meshes. The present pressure-based numerical method for unstructured mesh clearly demonstrates the same accuracy and robustness as that fur typical structured mesh.

Development of a 3-D Viscous Flow Solver Based on Unstructured Hybrid Meshes (비정렬 혼합 격자계 기반의 삼차원 점성 유동해석코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.677-684
    • /
    • 2007
  • In the Present Study, a 3-D viscous flow solver, based on unstructured hybrid meshses containing tetrahedra, prisms and pyramids, has been developed. A finite-volume discretization scheme is used for solving the compressible Navier-Stokes equations. A cell-vertex median dual volume is used for spatial discretization. The one-equation Spalart-Allmaras turbulence model has been adopted to evaluate the eddy viscosity. Validation were made by computing laminar and turbulent flows around a 3-D wing for steady flows and turbulent flows around an oscillating 3-D wing in harmonic motion for unsteady flows.

Assessment of Rotor Hover Performance Using a Node-based Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional viscous flow solver has been developed for the prediction of the aerodynamic performance of hovering helicopter rotor blades using unstructured hybrid meshes. The flow solver utilized a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart- Allmaras one-equation turbulence model. Calculations were performed at three operating conditions with varying tip Mach number and collective pitch setting for the Caradonna-Tung rotor in hover. Additional computations are made for the UH-60A rotor in hover. Reasonable agreements were obtained between the present results and the experiment in both blade loading and overall rotor performance. It was demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.