• Title/Summary/Keyword: Unsymmetric

Search Result 132, Processing Time 0.027 seconds

Endochronic simulation for the response of 1020 carbon steel tubes under symmetric and unsymmetric cyclic bending with or without external pressure

  • Lee, Kuo-Long;Hsu, Chien-Min;Hung, Chao-Yu
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.99-114
    • /
    • 2008
  • This paper presents the theoretical simulation of the response of 1020 carbon steel tubes subjected to symmetric and unsymmetric cyclic bending with or without external pressure by using the endochronic theory. Experimental data of 1020 carbon steel tubes tested by Corona and Kyriakides (1991) were used for evaluating the theoretical simulation. Several cases were considered in this study, they were symmetric bending without external pressure, symmetric bending with external pressure, unsymmetric bending without external pressure, and unsymmetric bending with external pressure. The responses of the moment-curvature, ovalization-curvature and ovalization-number of cycles with or without external pressure were discussed. It has been shown that the theoretical simulations of the responses correlate well with the experimental data.

Slippage Effects on the Curvature Shape of Unsymmetric Laminates (비대칭 적층판의 곡률형상에 대한 미끄러짐 효과)

  • Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.420-425
    • /
    • 2000
  • The room-temperature shapes of cured unsymmetric composite laminates have out-of-plane warping after autoclave processing. In addition, they exhibit two stable room-temperature configurations due to snap-through phenomena when the side length of laminates exceeds a critical value. The cured shapes of unsymmetric laminates are influenced by many environmental factors. Experiments show that the effect of too-plate cannot be ignored and has significant influence on the cured shape of unsymmetric laminates. In this present study, approximations to the strain fields are used in the expression for the total potential energy and the Rayleigh-Ritz method is applied. The slippage effects resulting from the interaction between the laminates and the tool-plate are considered. By introducing a dimensionless slippage coefficient and correlating the corresponding value with experimental results, the influence of processing parameters is investigated. Modeling is extended to predict curvatures of plate configurations with various aspect ratio.

  • PDF

A Study on thermal deformation behavior of laminates composed of different material layers. (다종 재료층으로 구성된 적층판의 열변형 거동 연구)

  • 정재한;구남서;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.54-57
    • /
    • 2000
  • Thermal deformation behavior has been investigated for unsymmetric laminates composed of various kinds of material layers, such as stainless steel, aluminum, carbon/epoxy or glass/epoxy. The thermal deformations of unsymmetric laminates were predicted using the classical lamination theory and compared with those obtained from experimental measurement. In the case of unsymmetric laminate composed of stainless steel and aluminum layer, the experimental results were agreed well with the values predicted. But in the case of unsymmetric laminate composed of fiber composite layers, there was a considerable difference of thermal deformation between the prediction and experimental measurement, which may be from the change of material properties of fiber composite layers for temperature variation.

  • PDF

Simultaneous Measurement of Strain and Temperature During and After Cure of Unsymmetric Composite Laminate Using Fiber Optic Sensors (비대칭 복합적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 측정)

  • 강동훈;강현규;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • In this paper, we present the simultaneous measurement of the fabricaition strain and temperature during and after cure of unsymmetric composite laminate uising fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPl) hybrid sensors are used to measure those measurands. The characteristic matrix of sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilized as a light source. FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate at different direction and different location. We perform the real time measurement of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

  • PDF

Structural Seperation of Unsymmetric Highrise Apartments (비정형 고층아파트에서의 구조체 분리 간격)

  • 정하선;현창국;윤영호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.56-60
    • /
    • 1989
  • It is well known that the symmetric buildings have higher resistance than the unaymetric ones do under seismic load. However, it is sometimes inevitable to build an unsymmetric structure due to the site conditions or architectural needs. The unsymmetric building has structural disadvantages under seismic load. In such a case the structural seperation joints are often used to avoid those disadvantages. This paper presents a method to determine the width of the seperation joints for unsymmetric, reinforced concrete apartments structured by walls and slabs only. The variables of the study were the ratio of shear-wall stiffness to the building length in the same directron, the building height and the story mass.

  • PDF

Warping Analysis of Unsymmetric Laminated Composites (비대칭 복합적층판 의 Warping 해석)

  • 전완주;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.404-409
    • /
    • 1983
  • The warping of unsymmetric laminated composites is induced by residual curing stress at the room temperature. Classical lamination theory (C.L.T.) predicts the room temperature shapes of all unsymmetric laminates to be a saddle. Experimental observations, however, indicate some unsymmetric laminated composites have cylindrical room temperature shapes. This anomalous behavior is explained by the extention of C.L.T. which involves Von Karman's large deflection theory. It is shown that, depending on the thickness, width, length, curing temperature and room temperature of the laminate, critical boundaries of the shape change are determined. Theoretical predictions are compared with experimental results of Toray Graphite/Epoxy {O$_{n}$/90$_{n}$}$_{T}$./....

The unsymmetric finite element formulation and variational incorrectness

  • Prathap, G.;Manju, S.;Senthilkumar, V.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The unsymmetric finite element formulation has been proposed recently to improve predictions from distorted finite elements. Studies have also shown that this special formulation using parametric functions for the test functions and metric functions for the trial functions works surprisingly well because the former satisfy the continuity conditions while the latter ensure that the stress representation during finite element computation can retrieve in a best-fit manner, the actual variation of stress in the metric space. However, a question that remained was whether the unsymmetric formulation was variationally correct. Here we determine that it is not, using the simplest possible element to amplify the principles.

Papers : Simultaneous Monitoring of Strain and Temperature During and After Cure of Unsymmetric Cross - ply Composite Laminate Using Fiber Optic Sensors (논문 : 비대칭 직교적층 복합재료 적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 모니터링)

  • Gang,Hyeon-Gyu;Gang,Dong-Hun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, we present the simulation monitoring of strain and temperature during and after the cure of unsymmetric composite laminate using fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors are used to measure those measurands. The characteristic matrix of the sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilised as a lighr source. Two FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate in different directions and different locations. We perform a real time monitoring of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in a thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

Prediction of Spring-back for GFR/CFR Unsymmetric Hybrid Composites (유리섬유/탄소섬유 강화 비대칭 하이브리드 복합재의 스프링 백 예측)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Won, Myung-Shik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.158-161
    • /
    • 2005
  • The fiber-reinforced composite materials have been advanced for various applications because of its excellent mechanical and electromagnetic properties. On their manufacturing processes, however, thermo-curing inherently produces the undesired thermal deformation mainly from temperature drop from the process temperature to the room temperature, so called spring-back. The spring-back must be removed to keep the precision of designed shape. In this research, the spring-back of {glass fiber / epoxy}+{carbon fiber / epoxy} unsymmetric hybrid composites were predicted using Classical Lamination Theory (CLT), and compared with the experimental data. Additionally, using finite element analysis (ANSYS), the predicted data and experimental data were compared. The predicted values by CLT and ANSYS were well matched with experimental data.

  • PDF

Motion of rigid unsymmetric bodies and coefficient of friction by earthquake excitations

  • Zadnik, Branko
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.257-267
    • /
    • 1994
  • Motions of an unsymmetric rigid body on a rigid floor subjected to earthquake excitations with special attention to coefficient of friction are investigated. Motions of a body in a plane are classified (Ishiyama 1980) into six types, i.e. (1) rest, (2) slide, (3) rotation, (4) slide rotation, (5) translation jump, (6) rotation jump. Based upon the theoretical and experimental research work special attention is paid to the sliding of a body. The equations of motions and the behavior of coefficient of friction in the time of floor excitation are studied. One of the features of this investigation is the introduction and estimation of the "time dependent" coefficient of friction. It has been established that the constant kinetic coefficient of friction $${\mu}(kin){\sim_\sim}0.8{\mu}(stat)$$ does not give the appropriate results. The method for the estimation of the friction coefficient variation during the time is given.