• Title/Summary/Keyword: Unverified Solution

Search Result 4, Processing Time 0.017 seconds

The Analysis of Relationship between Error Types of Word Problems and Problem Solving Process in Algebra (대수 문장제의 오류 유형과 문제 해결의 관련성 분석)

  • Kim, Jin-Ho;Kim, Kyung-Mi;Kwean, Hyuk-Jin
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.599-624
    • /
    • 2009
  • The purpose of this study was to investigate the relationship between error types and Polya's problem solving process. For doing this, we selected 106 sophomore students in a middle school and gave them algebra word problem test. With this test, we analyzed the students' error types in solving algebra word problems. First, We analyzed students' errors in solving algebra word problems into the following six error types. The result showed that the rate of student's errors in each type is as follows: "misinterpreted language"(39.7%), "distorted theorem or solution"(38.2%), "technical error"(11.8%), "unverified solution"(7.4%), "misused data"(2.9%) and "logically invalid inference"(0%). Therefore, we found that the most of student's errors occur in "misinterpreted language" and "distorted theorem or solution" types. According to the analysis of the relationship between students' error types and Polya's problem-solving process, we found that students who made errors of "misinterpreted language" and "distorted theorem or solution" types had some problems in the stage of "understanding", "planning" and "looking back". Also those who made errors of "unverified solution" type showed some problems in "planing" and "looking back" steps. Finally, errors of "misused data" and "technical error" types were related in "carrying out" and "looking back" steps, respectively.

  • PDF

An analysis of errors in problem solving of the function unit in the first grade highschool (고등학교 1학년 함수단원 문제해결에서의 오류에 대한 분석)

  • Mun, Hye-Young;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.277-293
    • /
    • 2011
  • The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.

  • PDF

A Study on the High-Speed Malware Propagation Method for Verification of Threat Propagation Prevent Technology in IoT Infrastructure (IoT 인프라 공격 확산 방지 기술 성능 검증을 위한 악성코드 고속 확산 기법 연구)

  • Hwang, Song-yi;Kim, Jeong-Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.617-635
    • /
    • 2021
  • Internet of Things (IoT) devices connected to the network without appropriate security solutions have become a serious security threat to ICT infrastructure. Moreover, due to the nature of IoT devices, it is difficult to apply currently existing security solutions. As a result, IoT devices have easily become targets for cyber attackers, and malware attacks on IoT devices are actually increasing every year. Even though several security solutions are being developed to protect IoT infrastructure, there is a great risk to apply unverified security solutions to real-world environments. Therefore, verification tools to verify the functionality and performance of the developed security solutions are also needed. Furthermore, just as security threats vary, there are several security solution s that defend against them, requiring suitable verification tools based on the characteristics of each security solution. In this paper, we propose an high-speed malware propagation tool that spreads malware at high speed in the IoT infrastructure. Also, we can verify the functionality of the security solution that detect and quickly block attacks spreading in IoT infrastructure by using the high-speed malware propagation tool.

A Study on the Necessity of Verification about depot level maintenance plan through the Weapons System cases analysis (무기체계 사례 분석을 통한 창정비개발계획안 검증 필요성 연구)

  • Ahn, Jung-Jun;Kim, Su-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • This study has done to search for a solution to remove risk limitedly caused by separating weapon system acquisition from operation and maintenance at the view point of Logistic Commander who's responsible for stable operation and maintenance after acquiring weapon system. At the System development stage, unverified overhaul development plan may cause additional manpower and costs after the development, and furthermore it is likely to have risk to lower reliability of the military. Thus, research and development agency should write overhaul development plan at the System development stage, and it should be verified through evaluation and verification test. Secondly, during research and development, institutional supplementation is needed to calculate human and material resources writing overhaul development plan. Thirdly, it should be able to analyze proper operation & maintenance plan and cost for overhaul plan at the pre-investigation stage. Fourthly, the base which can develop overhaul concept and overhaul factors should be included in the need and need determination document. Lastly, for the weapon system which has small amount of high power figure, project management should be performed to be able to specify at the each acquisition level of weapon system to realize Article 28, clause 3 and 4 of Defense business law.