• Title/Summary/Keyword: Utility interactive system

Search Result 145, Processing Time 0.02 seconds

Control Characteristics of Three-Phase Utility Interactive Phovotovoltaic Power Generation System (3상 계통연계 태양광발전시스템의 운전특성)

  • Kim, Yeong-Cheol;Jeong, Myeong-Ung;Seo, Gi-Yeong;Lee, Hyeon-U;U, Jun-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.536-543
    • /
    • 2000
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper present a three phase inverter for photovoltaic power system with current controller, voltage controller, PLL Control system and the Phase detector of Interactive Voltage by using dq transformation. The proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor.

  • PDF

A Utility Interactive Photovoltaic Generation System using PWM Chopper and Current Source Inverter (PWM 쵸퍼와 전류형 인버터를 이용한 계통연계형 태양광발전시스템)

  • 이승환;성낙규;오봉환;검성남;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.323-329
    • /
    • 1998
  • In this paper, we compose of the utility interactive photovoltaic(PV) generation system with a PWM stepdown chopper and a current source inverter. The stepdown chopper is controlled by the several gate pulses (twice frequency of utility voltage, square pulse and without the chopper) of chopper part to reduce pulsation of DC current and size of DC reactor. PV current only is measured for maximum power point tracking without any influence on the variation of insolation and temperature. Therefore, we can control modulation factor of the chopper to operate at maximum power point of solar cell. And, the utility interactive photovoltaic generation system supplies an AC power to the load and the utility power system.

  • PDF

A filed operation characteristics and the controversial point of Photovoltaic power generation system (태양광 발전시스템의 현장 운전특성 및 문제점)

  • Koh, Kang-Hoon;Suh, Ki-Young;Lee, Hyun-Woo;Hong, Doo-Sung;Gang, Yeong-Cheol;U, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.381-383
    • /
    • 2000
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller, PLL control system and the phase detector of interactive voltage by using da transformation. The proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

The Construction and Operating Characteristics analysis of Utility interactive PV power generation system (계통연계형 태양광 발전시스템의 운전특성 해석과 문제점 분석)

  • Hong, D.S.;Koh, K.H.;Koh, H.S.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.334-336
    • /
    • 2001
  • The photovoltaic power generation system has a great future as clean energy instead of fossil fuel which has many environmental problems such as exhausted gas or air pollution. In a utility interactive photovoltaic generation system, a three-phase inverter is used for the connection between the photovoltaic array and the utility. This paper presents a three phase inverter for photovoltaic power system with current controller, voltage controller PLL control system and the phase detector of interactive voltage by using do transformation. The proposed inverter system provides a sinusoidal are current for domestic loads and the utility line with unity power factor. The results of the operated from January to October show the system characteristics.

  • PDF

A study of on the Efficiency Analysis for 3kW Utility interactive PV System (3kW 태양광발전시스템의 효율분석에 관한 연구)

  • Park, J.M.;Lim, H.W.;Choi, Y.O.;Lee, S.G.;Cho, G.B.;Baek, H.N
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.61-63
    • /
    • 2005
  • Utility interactive photovoltaic systems is one of the most premising applications of photovoltaic systems. These systems are employed in applications where utility service is already available. In this case, there is no need for battery storage because utility power may be used to supplement photovoltaic systems when the load exceeds available PV generation. The load receives electricity from both the photovoltaic array and the utility inter-tied. In this paper, Principle and operating characteristic of Utility Interconnected Photovoltaic System is presented. For the purpose of optimal utility Inter-tied photovoltaic system design and installation. It is that demonstrate throughout the installed 3 PV system respectively, 3kW utility interconnected residential system.

  • PDF

Modeling for Utility Interactive Photovoltaic Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광 발전시스템의 배전계통 연계운전을 위한 모델링)

  • Kim, Woo-Hyun;Kang, Min-Kyu;Kim, Eung-Sang;Kim, Ji-Won;Ro, Byong-Kwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1180-1182
    • /
    • 1999
  • Modeling for utility interactive photovoltaic power generation system has been studied using PSCAD/EMTDC. The proposed model system consists of a simple utility circuit configuration, 3kW of single phase utility interactive photovoltaic system, single phase PWM voltage source inverter module, and feed forward PID controller as control circuit. In the system, the DC current is assumed constant, and the voltage source inverter provides sinusoidal ac current for the loads of utility system. The simulation results are given in order to verify the effectiveness of the proposed model. The phases of output voltage of utility system and the output current of the inverter module are compared. Especially, the compensation effect of the photovoltaic system for the unbalanced load is analyzed. and the transient phenomena for a phase to ground fault are also simulated.

  • PDF

Modeling of utility interactive photovoltaic system DC-DC converter (태양광 발전 시스템용 DC-DC 컨버터의 모델링)

  • Mun, S.P.;Park, Y.J.;Kim, Y.M.;Kang, W.J.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.215-217
    • /
    • 2002
  • In this paper, a new converter for utility interactive photovoltaic system is proposed, the conventional utility interactive photovoltaic system is composed of a PWM inverter and a DC converter. However, the increased switching loss and the high frequency switching noise become a problem. the control accuracy of the system is made to lower by the dead time of the switching devices. and it becomes a cause of the lower conversion efficiency. In order to resolve those problems, we applied a non- dissipative snubber circuit to a converter, which generates the single phase absolute value of sinusoidal current. the converter consists of two switching devices and one capacitor which constitute a non-dissipative snubber circuit. the proposed circuit is very useful to minimize and increase efficiency, when it is used to an utility interactive photovoltaic system. it is confirmed by simulation that the proposed converter for new photovoltaic system has stable operation and good output.

  • PDF

A Novel Flyback-type Utility Interactive Inverter for AC Module Systems

  • Shimizu Toshihisa;Nakamura Naoki;Wada Keiji
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.518-522
    • /
    • 2001
  • In recent years, natural energy has attracted growing interest because of environmental concerns. Many studies have been focused on photovoltaic power generation systems because of the ease of use in urban areas. On the conventional system, many photovoltaic modules (PV modules) are connected in series in order to obtain the sufficient DC-bus voltage for generating AC output voltage at the inverter circuit. However, the total generation power on the PV modules sometimes decreases remarkably because of the shadows that partially cover the PV modules. In order to overcome this drawback, an AC module strategy is proposed. On this system, a small power DC-AC utility interactive inverter is mounted on each PV module individually and the inverter operates so as to generate the maximum power from the corresponding PV module. This paper presents a novel flyback-type utility interactive inverter circuit suitable for AC module systems. The feature of the proposed system are, (1) small in volume and light in weight, (2) stable AC current injection, (3) enabling a small DC capacitor. The effectiveness of the proposed system is clarified through the simulation and the experiments.

  • PDF

Single-Phase Utility-Interactive Inverter for Residential Fuel Cell Generation System (가정용 연료전지 발전 시스템을 위한 단상 계통연계형 인버터)

  • Jung, Sang-Min;Bae, Young-Sang;Yu, Tae-Sik;Kim, Hyo-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • In this paper, a new single-phase utility-interactive inverter system for residential power generation with fuel cell is proposed. The proposed inverter system is not only capable of working in both stand-alone and grid-connected mode, but also ensures smooth and automatic transfer between the two modes of operation. The proposed control method has little steady-state error and good transient response characteristic. Also, the control method can be implemented using low-cost, fixed point DSP since it has simpler structure, smaller amount of calculation, and smaller number of sensors. The controller for the proposed utility-interactive inverter system is described, and the validity is verified through simulation and experiment.

Utility Interactive Photovoltaic Generation System Using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압초퍼를 이용한 계통연계형 태양광발전 시스템)

  • 김영철;이현우;서기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.325-331
    • /
    • 1999
  • In a utility interactive photovoltaic generation system. a PWM inverter is used for the connection between the p photovoltaic arrays and the utility. The dc current becomes pulsated when the conventional inverter system operates i in the continuous current mode and de current pulsation causes the distortion of the accurrent waveform. This paper p presents the reduced pulsation of de input current by operating the inverter with buck-boost chopper in the d discontinuous conduction mode. The dc current which contains harmonic component is analyzed by means of s separating into two terms of a ripple component and a direct component. The constant dc current without p pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provides a sinusoidal ac c current for domestic loads and the utility line with unity power factor.

  • PDF