• Title/Summary/Keyword: VFH

Search Result 25, Processing Time 0.032 seconds

Purification and characterization of biochemical properties of hemolysin from Vibrio fluvialis (Vibrio fluvialis 유래의 hemolysin 정제와 생화학적 특성)

  • 이종희;한정현;안선희;김선회;이은미;공인수
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.490-495
    • /
    • 2002
  • Hemolysin (VFH) of V. fluvialis, which is a pathogenic bacteria, causing watery diarrhea with vomiting, abdominal croup, was purified. V. fluvialis was cultivated in BHI medium and the culture supematant was precipitated by ammonium sulfate. The protein was purified by chromatographies on columns of DEAE-cellulose and Mono-Q. Molecular weight of the purified VFH was estimated as 79kDa by SDS-PAGE. The optimal temperature for a maximum hemolytic activity was at around 35$^{\circ}C$ and the activity was decreased at 4$0^{\circ}C$ Cytotoxicity of VFH was also investigated using RTG-2 cell line. LDH assay study showed that 50$\mu\textrm{g}$/m1 of VFH release 80% of total cellular LDH (lactate dehydrogenase) from RTG-2 cell and microscopic observation also showed the morphological change of cell.

Obstacle a voidance using VFH (Vector Field Histogram) in four legged robot (VFH(Vector Field Histogram)을 이용한 4족 로봇의 장애물 회피)

  • Jung, Hyun-Ryong;Kim, Young-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.23-26
    • /
    • 2003
  • The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our four-legged robot.

  • PDF

Development of an Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동로봇을 위한 장애물 회피 알고리즘 개발)

  • Kim Hongryeol;Kim Dae Won;Kim Hong-Seok;Sohn SooKyung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.291-299
    • /
    • 2005
  • An obstacle avoidance algorithm for a network-based autonomous mobile robot is proposed in this paper. The obstacle avoidance algorithm is based on the VFH(Vector Field Histogram) algorithm and two delay compensation methods with the VFH algorithm are proposed for a network-based robot with distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the environmental sensor information is compensated by prospection with acquired environmental sensor information, measured network delays, and the kinematic model of the robot. The compensated environmental sensor information is used for building polar histogram with the VFH algorithm. Secondly, a sensor fusion algorithm for localization of the robot is proposed to compensate the delay of odometry sensor information and the delay of environmental sensor information. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal positioning is shown here.

VFH-based Navigation using Monocular Vision (단일 카메라를 이용한 VFH기반의 실시간 주행 기술 개발)

  • Park, Se-Hyun;Hwang, Ji-Hye;Ju, Jin-Sun;Ko, Eun-Jeong;Ryu, Juang-Tak;Kim, Eun-Yi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.65-72
    • /
    • 2011
  • In this paper, a real-time monocular vision based navigation system is developed for the disabled people, where online background learning and vector field histogram are used for identifying obstacles and recognizing avoidable paths. The proposed system is performed by three steps: obstacle classification, occupancy grid map generation and VFH-based path recommendation. Firstly, the obstacles are discriminated from images by subtracting with background model which is learned in real time. Thereafter, based on the classification results, an occupancy map sized at $32{\times}24$ is produced, each cell of which represents its own risk by 10 gray levels. Finally, the polar histogram is drawn from the occupancy map, then the sectors corresponding to the valley are chosen as safe paths. To assess the effectiveness of the proposed system, it was tested with a variety of obstacles at indoors and outdoors, then it showed the a'ccuracy of 88%. Moreover, it showed the superior performance when comparing with sensor based navigation systems, which proved the feasibility of the proposed system in using assistive devices of disabled people.

Real Time Monocular Navigation using VFH (단일 카메라를 이용한 VFH 기반의 실시간 주행 기술 개발)

  • Jo, Jang-won;Ju, Jin Sun;Ko, Eunjeong;Kim, Eun Yi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.348-351
    • /
    • 2010
  • 본 논문에서는 단일 카메라로부터 주어진 영상을 실시간으로 장애물과 비장애물 영역으로 분류한 후 VFH 를 이용하여 안전한 경로를 선정하는 실시간 주행 시스템을 개발한다. 제안된 시스템은 점유 그리드맵 생성기와 VFH 기반의 선정기로 구성된다. 점유 그리드맵 생성기는 입력된 $320{\times}240$ 영상의 색조와 명도 정보를 이용하여 실시간으로 배경과 장애물 영역을 분류하고, 이를 바탕으로 위험도에 따라 10 개의 그레이 레벨을 가지는 $32{\times}24$ 의 점유 그리드맵을 생성한다. VFH를 이용하여 폴라 히스토그램을 작성한 후 밀도가 낮은 곳으로 주행 경로를 결정 한다. 제안된 기술의 효율성을 증명하기 위하여 다양한 형태의 장애물을 포함하는 실내 및 실외 환경에서 평가하였으며 센서 기반의 그 결과는 기존의 센서기반의 주행시스템과 비교 되었다. 그 결과 제안된 시스템은 88%의 정확도를 보였으며, 기존의 시스템보다 실시간으로 빠르고 안전한 주행을 수행할 수 있음이 증명되었다.

맵-빌딩을 이용한 사족 로봇의 장애물 회피

  • 고환규;유창범;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.277-277
    • /
    • 2004
  • 로봇의 실시간 장애물 회피 방법은 연구되어 왔고 실행되어 왔다. 이러한 방법을 vector field histogram(VFH)라 하며 이러한 방법은 알려져 있지 않는 장애물의 발견과 장애물과의 충돌을 피하는 동시에 목표점으로의 로봇의 이동을 위한 알고리즘이다. The vector field histogram(VFH)방법은 world model로 이차원 Cartesian histogram grid를 이용하였다. VFH 방법은 Vehicle을 원하는 데로 컨트롤하기 위한 과정으로 두 단계 데이터 줄이는 과정이다. Histogram grid 의 첫 번째 단계는 로봇의 순간위치를 구성하기 위한 일 차원 polar histogram에 포함된 각 섹터의 값은 polar obstacle density(POD)로 방향을 표시한다.(중략)

  • PDF

Performance Enhancement of an Obstacle Avoidance Algorithm using a Network Delay Compensationfor a Network-based Autonomous Mobile Robot (네트워크 기반 자율이동 로봇을 위한 시간지연 보상을 통한 장애물 회피 알고리즘의 성능 개선)

  • Kim, Joo-Min;Kim, Jin-Woo;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1898-1899
    • /
    • 2011
  • In this paper, we propose an obstacle avoidance algorithm for a network-based autonomous mobile robot. The obstacle avoidance algorithm is based on the VFH (Vector Field Histogram) algorithm and delay-compensative methods with the VFH algorithm are proposed for the network-based robot that is a unified system composed of distributed environmental sensors, mobile actuators, and the VFH controller. Firstly, the compensated readings of the sensors are used for building the polar histogram of the VFH algorithm. Secondly, a sensory fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of the readings of an odometry sensor and the delay of the readings of the environmental sensors. The performance enhancements of the proposed obstacle avoidance algorithm from the viewpoint of efficient path generation and accurate goal positioning are also shown in this paper through some simulation experiments by the Marilou Robotics Studio Simulator.

  • PDF

Obstacle Avoidance Algorithm for a Network-based Autonomous Mobile Robot

  • Sohn, Sook-Yung;Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.831-833
    • /
    • 2004
  • In this paper, an obstacle avoidance algorithm is proposed for a network-based robot considering network delay by distribution. The proposed algorithm is based on the VFH(Vector Field Histogram) algorithm, and for the network-based robot system, in which it is assumed robot localization information is transmitted through network communication. In this paper, target vector for the VFH algorithm is estimated through the robot localization information and the measurement of its delay by distribution. The delay measurement is performed by time-stamp method. To synchronize all local clocks of the nodes distributed on the network, a global clock synchronization method is adopted. With the delay measurement, the robot localization estimation is performed by calculating the kinematics of the robot. The validation of the proposed algorithm is performed through the performance comparison of the obstacle avoidance between the proposed algorithm and the existing VFH algorithm on the network-based autonomous mobile robot.

  • PDF

VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle (무인수상선의 단일 카메라를 이용한 VFH+ 기반 장애물 회피 기법)

  • Kim, Taejin;Choi, Jinwoo;Lee, Yeongjun;Choi, Hyun-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.426-430
    • /
    • 2016
  • Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.

Obstacle avoidance using Vector Field Histogram in simulation (Vector Field Histogram를 이용한 장애물 회피 시뮬레이션)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1076-1079
    • /
    • 2003
  • The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our simulation program and tested..

  • PDF