• Title/Summary/Keyword: VHb

Search Result 17, Processing Time 0.025 seconds

Cell growth and GFP expression in E. coli BL21 and W3110 under coexpression of Vitreoscilla hemogobin

  • Gang, Dong-Gyun;Kim, Yeon-Gyu;Cha, Hyeong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.754-757
    • /
    • 2001
  • Expression of the vhb gene encoding bacterial hemoglobin (VHb) from Vitreoscilla has been used to improve recombinant cell growth and enhance product formation under microaerobic conditions because of its ability to enhance oxygen use. We coexpressed GFP and VHb in Escherichia coli BL21 and W3110, and compared with GFP control which was not expressed VHb. We used nar oxygen-dependent inducible promoter for VHb expression. The GFP amounts in E. coli expressed VHb was about five fold higher than in the control Fluorescence intensity was increased about two fold.

  • PDF

Effects of the Vitreoscilla Hemoglobin Gene on the Expression of the Ferritin Gene in Escherichia coli

  • Chung, Yun-Jo;Kim, Kyung-Suk;Jeon, Eun-Soon;Park, Kie-In;Park, Chung-Ung
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.503-507
    • /
    • 1998
  • To investigate the effects of the Vitreoscilla hemoglobin (VHb) gene on the production of a heterologous protein, a comparative expression system for VHb and ferritin was constructed. First, the VHb gene was inserted into the downstream and upstream regions of the ferritin gene to construct pHF2 and pHF3, respectively. Next, the two plasmids pACHB1 and pVUTFH10, having the VHb gene and the ferritin gene respectively, were constructed in order to express the two genes in different plasmids by using a coplasmid expression system. It was observed that the cell growth was improved in all strains containing the VHb gene. Furthermore, in our coplasmid expression system, the presence of the VHb gene increased production of the ferritin by 1.8 times, as much as that in a strain not having the VHb gene.

  • PDF

High-Efficiency Generation of Monoclonal Antibody for Vitreoscilla Hemoglobin Protein

  • Kim, Eun-Mi;Kim, Myung-Hee;Kim, Min-Gon;Kim, Sang-Woo;Ro, Hyeon-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.226-229
    • /
    • 2012
  • Bacterial hemoglobin from Vitreoscilla (VHb) is recognized as a good fusion protein for the soluble expression of foreign protein. In this study, we generated a monoclonal antibody (MAb) against VHb for its detection. For the rapid screening of MAb, a protein chip technology based on the Alexa-488 (A488) dye labeling method was introduced. In order to fabricate the chip, the VHb protein was chemically coupled to the chip surface and then the culture supernatants of 84 hybridoma cell lines were spotted onto the VHb chip. The bound MAbs were measured by A488-modified anti-mouse IgG. A single spot (MAb A10) exhibited significantly high signal intensity. The immunoblot analysis evidenced that the MAb A10 can detect VHb-fused proteins with high specificity.

Construction and Characterization of Vitreoscilla Hemoglobin (VHb) with Enhanced Peroxidase Activity for Efficient Degradation of Textile Dye

  • Zhang, Zidong;Li, Wei;Li, Haichao;Zhang, Jing;Zhang, Yuebin;Cao, Yufeng;Ma, Jianzhang;Li, Zhengqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1433-1441
    • /
    • 2015
  • Pollution resulting from the discharge of textile dyes into water systems has become a major global concern. Because peroxidases are known for their ability to decolorize and detoxify textile dyes, the peroxidase activity of Vitreoscilla hemoglobin (VHb) has recently been studied. It is found that VHb and variants of this enzyme show great promise for enzymatic decolorization of dyes and may play a role in achieving their successful removal from industrial wastewater. The level of VHb peroxidase activity correlates with two amino acid residues present within the conserved distal pocket, at positions 53 and 54. In this work, sitedirected mutagenesis of these residues was performed and resulted in improved VHb peroxidase activity. The double mutant, Q53H/P54C, shows the highest dye decolorization and removal efficiency, with 70% removal efficiency within 5 min. UV spectral studies of Q53H/P54C reveals a more compact structure and an altered porphyrin environment (λSoret = 413 nm) relative to that of wild-type VHb (λSoret = 406), and differential scanning calorimetry data indicate that the VHb variant protein structure is more stable. In addition, circular dichroism spectroscopic studies indicate that this variant's increased protein structural stability is due to an increase in helical structure, as deduced from the melting temperature, which is higher than 90℃. Therefore, the VHb variant Q53H/P54C shows promise as an excellent peroxidase, with excellent dye decolorization activity and a more stable structure than wild-type VHb under high-temperature conditions.

7-ACA 생물공정 개발을 위한 생체 촉매 연구 : VHb-DAO 기질 특이성(I)

  • Ha, Yeong-Ran;Jeong, Seong-Hui;Kim, Suk-Hyeon;Gang, Yong-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.463-465
    • /
    • 2000
  • 부분 정제한 VHb-DAO와 CPC를 30분 이상 반응시키면 CPC가 GL-7ACA로 80%이상 변환되었다. VHb-DAO와 D-form의 아미노산이 반응한 결과 $K_m$은 D-Methionine, D-Valine이 낮으며, $V_{max}$는 D-${\alpha}$-aminophenylacetic acid, D-Leucine, D-Phenyalanine가 높은 수치를 나타내었다.

  • PDF

Physiological Response of Escherichia coli W3110 and BL21 to the Aerobic Expression of Vitreoscilla Hemoglobin

  • Lara, Alvaro R.;Galindo, Janet;Jaen, Karim E.;Juarez, Mariana;Sigala, Juan-Carlos
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1592-1596
    • /
    • 2020
  • The aerobic growth and metabolic performance of Escherichia coli strains BL21 and W3110 were studied when the Vitreoscilla hemoglobin (VHb) was constitutively expressed in the chromosome. When VHb was expressed, acetate production decreased in both strains and was nearly eliminated in BL21. Transcriptional levels of the glyoxylate shunt genes decreased in both strains when VHb was expressed. However, higher transcription of the α-ketoglutarate dehydrogenase genes were observed for W3110, while for BL21 transcription levels decreased. VHb expression reduced the transcription of the cytochrome bo3 genes only in BL21. These results are useful for better selecting a production host.

Comparative Production of Green Fluorescent Protein Under Co-expression of Bacterial Hemoglobin in Escherichia coli W3110 Using Different Culture Scales

  • Bassapa Johnvesly;Kang, Dong-Gyun;Park, Suk-Soon;Kim, Ji-Hyun;Cha, Hyung-Joon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.274-277
    • /
    • 2004
  • Production of green fluorescent protein (GFP) as a model foreign protein using different culture scales under co-expression of Vitreoscilla hemoglobin (VHb) in the industrial Escherichia coli strain W3110 (a K12 derivative), was examined. It was found that the VHb co-expressing W3110, exhibited an exceptional and sustained production ability during cell cultures using different scales, while the VHb non-expressing strain showed variable production levels. This high and sustained production ability indicates that the VHb co-expressing E. coli W3110, could be successfully employed for practical large-scale production cultures without the need for serious consideration of scale-up problems.

Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity

  • Isarankura-Na-Ayudhya, Chartchalerm;Tansila, Natta;Worachartcheewan, Apilak;Bulow, Leif;Prachayasittikul, Virapong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.532-541
    • /
    • 2010
  • Peroxidase-like activity of Vitreoscilla hemoglobin (VHb) has been recently disclosed. To maximize such activity, two catalytically conserved residues (histidine and arginine) found in the distal pocket of peroxidases have successfully been introduced into that of the VHb. A 15-fold increase in catalytic constant ($k_{cat}$) was obtained in P54R variant,which was presumably attributable to the lower rigidity and higher hydrophilicity of the distal cavity arising from substitution of proline to arginine. None of the modifications altered the affinity towards either $H_2O_2$ or ABTS substrate. Spectroscopic studies revealed that VHb variants harboring the T29H mutation apparently demonstrated a spectral shift in both ferric and ferrous forms (406-408 to 411 nm, and 432 to 424-425 nm, respectively). All VHb proteins in the ferrous state had a $\lambda_{soret}$ peak at ~419 nm following the carbon monoxide (CO) binding. Expression of the P54R mutant mediated the downregulation of iron superoxide dismutase (FeSOD) as identified by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting (PMF). According to the high peroxidase activity of P54R, it could effectively eliminate autoxidation-derived $H_2O_2$, which is a cause of heme degradation and iron release. This decreased the iron availability and consequently reduced the formation of the $Fe^{2+}$-ferric uptake regulator protein ($Fe^{2+}$-Fur), an inducer of FeSOD expression.

Enhanced Biodegradation of Environmental Allergen by a vgb-containing Burkholderia cepacia

  • Kim, Mi-Sun;Yoon, Suk-Ran;Jun, Woo-Jin;Park, So-Young;Yang, Young;Shim, Sang-In;Hwang, Kwang-Woo;Chung, Jin-Woong
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.262-267
    • /
    • 2005
  • Using genetic engineering, the Vitreoscilla (bacterial) hemoglobin gene (vgb) was integrated stably into the chromosomes of and Burkholderia cepacia. Similar to previous results, the wild type VHb improved growth for Burkholderia cepacia and degradation of benzoic acid under both normal and low aeration conditions. The stable expression of VHb enhanced these parameters. The results demonstrate the possibility that the positive effects provided by VHb may be augmented by protein engineering.

Overexpression of Shinorhizobium meliloti Hemoprotein in Streptomyces lividans to Enhance Secondary Metabolite Production

  • Kim, Yoon-Jung;Sa, Soon-Ok;Chang, Yong-Keun;Hong, Soon-Kwang;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2066-2070
    • /
    • 2007
  • It was found that Shinorhizobium meliloti hemoprotein (SM) was more effective than Vitreoscilla hemoglobin (Vhb) in promoting secondary metabolites production when overexpressed in Streptomyces lividans TK24. The transformant with sm (sm-transformant) produced 2.7-times and 3-times larger amounts of actinorhodin than the vhb-transformant in solid culture and flask culture, respectively. In both solid and flask cultures, a larger amount of undecylprodigiocin was produced by the sm-transformant. It is considered that the overexpression of SM especially has activated the pentose phosphate pathway through oxidative stress, as evidenced by an increased NADPH production observed, and that it has promoted secondary metabolites biosynthesis.