• Title/Summary/Keyword: Vacuum centrifugal casting

Search Result 8, Processing Time 0.018 seconds

Corrosion Behavior of Dental Alloys Cast by Various Casting Methods (치과용 주조합금의 주조방법에 따른 부식거동)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

Microstructures and Mechanical Properties of Pure Titanium Casting Specimens with Mold Temperatures (순수 티타늄 주조체의 주형온도에 따른 미세조직 및 기계적 성질)

  • Cha, Sung-Soo;Nam, Sang-Yong;Song, Young-Ju
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.307-315
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the change of microstructures and mechanical properties of pure titanium casting specimens as a function of mold temperatures. Methods: The pure titanium castings were fabricated using the centrifugal vacuum casting method with different mold temperatures of $200{\sim}500^{\circ}C$. The resulting castings were characterized by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and vicker,s hardness tester. Results: In case of the mold temperatures over $400^{\circ}C$, the porosity, surface crack and large grain size were observed in resulting castings. Conclusion: In this work, The most suitable mold temperature in casting of pure titanium was $300^{\circ}C$.

Manufacturing of Ti-48Al-2Cr-2Nb Alloy Turbocharger Turbine Wheel by Vacuum Centrifugal Casting (진공 원심 주조를 이용한 Ti-48Al-2Cr-2Nb 합금 터보차저 터빈휠 제작)

  • Pak, Sung Joon;Ju, Heongkyu
    • Journal of Korea Foundry Society
    • /
    • v.41 no.2
    • /
    • pp.127-131
    • /
    • 2021
  • Based on its good compatibility with high-temperature environments, the Ti-48Al-2Cr-2Nb alloy is used for high-temperature materials of industrial equipment. In this study, a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel was fabricated by a vacuum centrifugal casting method. The conditions that prevent misrun defects of the turbocharger turbine wheel blade from centrifugal casting using alumina molds were investigated. The microstructure of the alloy prepared by vacuum centrifugal casting was studied by means of optical microscopy (OM), with a micro-Vickers hardness analyzer (HV), by X-ray diffraction (XRD) and by SEM-EDS. The HV and SEM-EDS examinations of the as-cast Ti-48Al-2Cr-2Nb alloy showed that the thickness of the oxide layer (α-case) was typically less than 50 ㎛. At a high preheating temperature of 1,100℃, a moderate RPM of 260, and with an alumina mold with a large gate size, there were almost no misrun defects. Therefore, it was confirmed that a Ti-48Al-2Cr-2Nb alloy turbocharger turbine wheel with fewer misrun defects could be achieved through a high preheating temperature, a moderate RPM, a large gate size and an alumina mold to suppress the formation of alpha-case components.

Analysis of castability in c.p.Ti according to casting conditions (주조조건에 따른 순티타늄의 주조성 분석)

  • Hwang, Seong-Sig;Kwon, Seog-Suk
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.133-138
    • /
    • 2007
  • In this study, the castability and of commercially pure titanium(c.p.Ti) grade according to the casting condition which are the vacuum condition in casting machine and mold temperature of investment, was investigated. Argon-arc melt/centrifugal casting machine was used for casting the specimens. The microstructure and mechanical properties were evaluated by using optical microscope. The results were as follows; 1. It could make a sure that there's relatively not much defect of casting body of c.p.Ti according to the deference of air pressure. 2. It could make sure that it formed porosity on the surface inside of the casting body of c.p.Ti according to deferent temperature. and on excellent castability was below $200^{\circ}C$ 3. As the mold temperature of investment was increased, the lamellar structure of phase and coarse grains were shown, especially under 42MPa.

  • PDF

Manufactures of dental casting Co-Cr-Mo based alloys in addition to Sn, Cu and analysis of infrared thermal image for melting process of its alloys (Sn 및 Cu를 첨가한 치과 주조용 Co-Cr-Mo계 합금제조 및 용해과정 분석)

  • Kang, Hoo-Won;Park, Young-Sik;Hwang, In;Lee, Chang-Ho;Heo, Yong;Won, Yong-Gwan
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.141-147
    • /
    • 2014
  • Purpose: Dental casting #Gr I (Co-25Cr-5Mo-3Sn-1Mn-1Si), #Gr II (Co-25Cr-5Mo-5Cu-1Mn -1Si) and #Gr III (Co-25Cr-5Mo-3Sn-5Cu-1Mn-1Si) master alloys of granule type were manufactured the same as manufacturing processes for dental casting Ni-Cr and Co-Cr-Mo based alloys of ingot type. These alloys were analyzed melting processes with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer. Methods: These alloys were manufactured such as; alloy design, the first master alloy manufatured using vacuum arc casting machine, melting metal setting in crucible, melting in VIM, pouring in the mold of bar type, cutting the gate and runner bar and polishing. These alloys were put about 30g/charge in the ceramic crucible of high frequency induction centrifugal casting machine and heat, Infrared thermal image analyzer indicated alloys in the crucible were set and operated. Results: The melting temperatures of these alloys measuring infrared thermal image analyzer were decreased in comparison with remanium$^{(R)}$ GM 800+, vera PDI$^{TM}$, Biosil$^{(R)}$ f, WISIL$^{(R)}$ M type V, Ticonium 2000 alloys of ingot type and vera PDS$^{TM}$(Aabadent, USA), Regalloy alloys of shot type. Conclusion: Co-Cr-Mo based alloy in addition to Sn(#Gr I alloy) were decreased the melting temperature with heating time of high frequency induction centrifugal casting machine using infrared thermal image analyzer.

Corrosion Behaviors of TiN Coated Dental Casting Alloys (TiN피막 코팅된 치과주조용 합금의 부식거동)

  • Jo, Ho-Hyeong;Park, Geun-Hyeng;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.129-137
    • /
    • 2009
  • Corrosion behaviors of TiN coated dental casting alloys have been researched by using various electrochemical methods. Three casting alloys (Alloy 1: 63Co-27Cr-5.5Mo, Alloy 2: 63Ni-16Cr-5Mo, Alloy 3: 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting(CF), high frequency induction casting(HFI) and vacuum pressure casting(VP). The specimens were coated with TiN film by RF-magnetron sputtering method. The corrosion behaviors were investigated using potentiostat (EG&G Co, 263A. USA) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion morphologies were analyzed using FE-SEM and EDX. Alloy 1 and Alloy 2 showed the ${\alpha}-Co$ and ${\varepsilon}-Co$ phase on the matrix, and it was disappeared in case of TiN coated Alloy 1 and 2. In the Alloy 3, $Ni_2Cr$ second phases were appeared at matrix. Corrosion potentials of TiN coated alloy were higher than that of non-coated alloy, but current density at passive region of TiN coated alloy was lower than that of non-coated alloy. Pitting corrosion resistances were increased in the order of centrifugal casting, high frequency induction casting and vacuum pressure casting method from cyclic potentiodynamic polarization test.

The Effects of Cyclic Heat Treatment Process for Fine Microstructure of TiAl Cast Alloy (주조용 TiAl 합금의 조직 미세화를 위한 반복열처리 공정 조건에 관한 연구)

  • Kong, Man-Sik;Yang, Hyunseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.5
    • /
    • pp.195-200
    • /
    • 2019
  • For expanding the applications and workability of TiAl alloy, elongation is very important property. Fine microstructure is needed for elongation and physical properties of TiAl alloys. In this study, The effects of cyclic heat treatment process for fine microstructure of Ti-46Al-Nb-W-Cr-Si-C alloy, which was made by VAR (vacuum arc remelting) and VIM(vacuum induction melting) centrifugal casting process, was investigated. Cycle heat treatment process was very effective for recrystallization of this TiAl system, which has microstructure size of $50{\sim}100{\mu}m$ through pre-heat treatment, cyclic heat treatment in ${\alpha}+{\gamma}$ phase region and solution heat treatment respectively. Refined grain size was finally confirmed by photos of optical microscope and scanning electron microscope.

The Effect of Cooling method on the Surface Reaction Zone of CP Titanium Casting Body (티타늄 주조체 냉각방법이 표면반응층에 미치는 영향)

  • Moom, Soo;Choi, Seog-Soon;Moon, Il
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • This test is to conduct applied research the reaction area of the Ti-cast metal body which is made use of Dental Phosphate-silica alumina bonded investment material selling at a market, and the cooling method is how to effect on the acicular. The experimentation is as followings, 1. Experimental specimens After invest with Dental Phosphate-silica alumina bonded investment material, the $10{\times}10{\times}1.0mm^3$ wax pattern was casted by Dental high vacuum argon centrifugal casting machine. 2. Test We can analyze SEM/EDS, XRD utilize the fractography(an optical microscope). 3. Conclusion The pure cast metal body constituted of reaction products layer, stability layer and contamination layer. This pure cast have no connection with the cooling condition. The pure Titanium shows difference in a component distribution according to the cooling condition. Through this experimentation we can establish that acicular in the pure Ti-cast metal is consist of Hexagonal structure a=2.9505$\AA$, c=4.6826$\AA$.

  • PDF