• Title/Summary/Keyword: Variable-Speed and Constant-Speed Wind Turbine

Search Result 13, Processing Time 0.032 seconds

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Modeling of a Variable Speed Wind Turbine in Dynamic Analysis

  • Kim, Seul-Ki;Kim, Eung-Sang;Jeon, Jin-Hong
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.51-57
    • /
    • 2004
  • This paper describes the dynamic performance of a variable speed wind turbine system responding to a wide variety of wind variations. Modeling of the wind generation using power electronics interface is proposed for dynamic simulation analysis. Component models and equations are addressed and their incorporations into a transient analysis program, PSCAD/EMTDC are provided. A wind model of four components is described, which enables observing dynamic behaviors of the wind turbine resulting from wind variations. Controllable power inverter strategies are intended for capturing the maximum power under variable speed operation and maintaining reactive power generation at a pre-determined level for constant power factor control or voltage regulation control. The components and control schemes are modeled by user-defined functions. Simulation case studies provide variable speed wind generator dynamic performance for changes in wind speed

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Aero-elastic coupled numerical analysis of small wind turbine-generator modelling

  • Bukala, Jakub;Damaziak, Krzysztof;Karimi, Hamid Reza;Malachowski, Jerzy
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.577-594
    • /
    • 2016
  • In this paper a practical modelling methodology is presented for a series of aero- servo- elastic- coupled numerical analyses of small wind turbine operation, with particular emphasis on variable speed generator modelling in various wind speed conditions. The following characteristics are determined using the available computer tools: the tip speed ratio as a function of the generator constant (under the assumption of constant wind speed), the turbine coefficient of power as a function of the tip speed ratio (the torque curve is modified accordingly and generator speed and power curves are plotted), turbine power curves and coefficient of power curve as functions of the incoming wind speed. The last stage is to determine forces and torques acting on rotor blades and turbine tower for specific incoming wind speeds in order to examine the impact of the stall phenomena on these values (beyond the rated power of the turbine). It is shown that the obtained results demonstrate a valuable guideline for small wind turbines design process.

Effective Algorithm in Steady-State Analysis for Variable-Speed and Constant-Speed Wind Turbine Coupled Three-Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.139-146
    • /
    • 2003
  • In this paper, the steady-state operating performance analysis for the three-phase squirrel cage rotor self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) in addition to a constant-speed prime mover (CSPM) is presented on the basis of an effective algorithm based on its frequency-domain equivalent circuit. The operating characteristics of the three-phase SEIG coupled by a VSPM and/or a CSPM are evaluated on line processing under the condition of the electrical passive load parameters variations with simple and efficient computation processing procedure in unregulated voltage control loop scheme. A three-phase SEIG prototype setup with a VSPM as well as a CSPM is implemented for the small-scale clean renewable and alternative energy utilizations. The experimental operating characteristic results are illustrated and give good agreements with the simulation ones.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

Pitch Control Simulation of Horizontal Wind Power System (수평축 풍력발전시스템의 피치제어 시뮬레이션)

  • Hwang, Sung-Joon;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.846-848
    • /
    • 2000
  • In the early development of wind energy, the majority of wind turbines were operated at constant speed. Recently, the number of variable-speed wind turbines adopted pitch control apparatus has increased. This paper deal with a simulation of pitch control of variable-speed wind turbine and the response of pitch angle is traced in a given random wind speed.

  • PDF

A Study on the Wind Turbine Blade Optimization and Pitch Control Using the Hybrid Genetic Algorithm (혼합형 유전 알고리즘을 이용한 풍력발전기용 블레이드 최적설계 및 피치제어에 관한 연구)

  • Kang, Shin-Jae;Kim, Ki-Wan;Ryu, Ki-Wahn;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.7-13
    • /
    • 2002
  • This paper introduced a new hybrid genetic algorithm, verified its performance, and applied it to the optimization of blade design and pitch control for 30kW pitch-controlled variable-speed horizontal-axis wind turbine system to determine the optimum blade chord and twist distributions that maximize the energy production for a given Weibull wind distribution and the optimum blade pitch angles that maintain constant power output.

Development of Grid Connection Type Inverter for 30kW Wind Power Generation System (30kW급 발전시스템의 계통 연계형 인버터 개발)

  • Hahm, Nyeon-Kun;Kang, Seung-Ook;Kim, Yong-Joo;Han, Kyong-Hee;Ahn, Gyu-Bok;Song, Seung-Ho;Kim, Dong-Yong;Rho, Do-Hwan;Oh, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.990-992
    • /
    • 2002
  • 30kW electrical power conversion system is delveloped for the variable speed wind turbine system. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and frequency of generator output vary according to the wind speed, a dc/dc boosting chopper is utilized to maintain constant dc link voltage. Grid connection type PWM inverter supply currents into the utility line by regulating the dc link voltage. The active power is controlled by q-axis current which the reactive power can be controlled by d-axis current reference change. The phase angle of utility voltage is detected using s/w PLL(Phased Locked Loop) in d-q synchronous reference frame. This scheme gives a low cost power solution for variable speed WECS.

  • PDF

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.