• Title/Summary/Keyword: Vector data model

Search Result 1,161, Processing Time 0.03 seconds

Least-Squares Support Vector Machine for Regression Model with Crisp Inputs-Gaussian Fuzzy Output

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.507-513
    • /
    • 2004
  • Least-squares support vector machine (LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. In this paper, we propose LS-SVM approach to evaluating fuzzy regression model with multiple crisp inputs and a Gaussian fuzzy output. The proposed algorithm here is model-free method in the sense that we do not need assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Vector Data Hashing Using Line Curve Curvature (라인 곡선 곡률 기반의 벡터 데이터 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.65-77
    • /
    • 2011
  • With the rapid expansion of application fields of vector data model such as CAD design drawing and GIS digital map, the security technique for vector data model has been issued. This paper presents the vector data hashing for the authentication and copy protection of vector data model. The proposed hashing groups polylines in main layers of a vector data model and generates the group coefficients by the line curve curvatures of the first and second type of all poly lines. Then we calculate the feature coefficients by projecting the group coefficients onto the random pattern and generate finally the binary hash from the binarization of the feature coefficients. From experimental results using a number of CAD drawings and GIS digital maps, we verified that the proposed hashing has the robustness against various attacks and the uniqueness and security by the random key.

A Study on the Support Vector Machine Based Fuzzy Time Series Model

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.821-830
    • /
    • 2006
  • This paper develops support vector based fuzzy linear and nonlinear regression models and applies it to forecasting the exchange rate. We use the result of Tanaka(1982, 1987) for crisp input and output. The model makes it possible to forecast the best and worst possible situation based on fewer than 50 observations. We show that the developed model is good through real data.

  • PDF

Short utterance speaker verification using PLDA model adaptation and data augmentation (PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증)

  • Yoon, Sung-Wook;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

Quadratic Loss Support Vector Interval Regression Machine for Crisp Input-Output Data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.449-455
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval regression models for crisp input-output data. The proposed method is based on quadratic loss SVM, which implements quadratic programming approach giving more diverse spread coefficients than a linear programming one. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Early Software Quality Prediction Using Support Vector Machine (Support Vector Machine을 이용한 초기 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.235-245
    • /
    • 2011
  • Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.

Electricity Demand Forecasting based on Support Vector Regression (Support Vector Regression에 기반한 전력 수요 예측)

  • Lee, Hyoung-Ro;Shin, Hyun-Jung
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

Import Vector Voting Model for Multi-pattern Classification (다중 패턴 분류를 위한 Import Vector Voting 모델)

  • Choi, Jun-Hyeog;Kim, Dae-Su;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.655-660
    • /
    • 2003
  • In general, Support Vector Machine has a good performance in binary classification, but it has the limitation on multi-pattern classification. So, we proposed an Import Vector Voting model for two or more labels classification. This model applied kernel bagging strategy to Import Vector Machine by Zhu. The proposed model used a voting strategy which averaged optimal kernel function from many kernel functions. In experiments, not only binary but multi-pattern classification problems, our proposed Import Vector Voting model showed good performance for given machine learning data.

An Intergrated GIS data model of Vector data and Raster data based on Quadtree for Spatial data processing (공간자료의 처리를 위한 사분트리에 기반한 래스터자료와 벡터자료의 통합 GIS모델)

  • Kang, Sin-Bong;Lee, Tae-Seung;Choi, Hee-Jay;Choy, Yoon-Chul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.2 no.1 s.3
    • /
    • pp.99-106
    • /
    • 1994
  • Raster data mode and Vector data are the two major model in geographic information systems. These two data models are difficult to be intergrated because of their differences in structures and properties. Almost all of the current GIS systems process in one data model by converting one data type to another type. So. the loss and change of information caused by data conversiion degrades the accuracy of data. In this paper, we propose a new data model which can process two data models without conversion. We use quadtree for raster data and topological vector model for vector data. The output is formed as raster data model of quadtree. We can get more accurate overay output, and this intergrated model is more suitable for data like forest, landuses, soils that consist of classes which have small distribution changes.

  • PDF