• Title/Summary/Keyword: Vehicle Cost

Search Result 1,311, Processing Time 0.038 seconds

Relative Cost Modeling for Main Component Systems fo Parallel Hybrid Electric Vehicle (병렬 하이브리드 전기자동차의 주요 구성시스템에 대한 상대적 가격 모델링)

  • Kim, Pill-Soo;Kim,Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.294-300
    • /
    • 1999
  • There is a growing interest in hybrid electric vehicles due to environmental concerns. Recent efforts are directed toward developing an improved main component systems for the hybrid electric vehicle applications. Soon after the introduction of electric starter for internal combustion engine early this century, despite being energy efficient and nonpolluting, electric vehicle lost the battle completly to internal combustion engine due to its limited range and inferior performance. Hybrid Electric vehicles offer the most promising solutions to reduce the emission of vehicles. This paper describes a method for cost reduction estimation of parallel hybrid electric vehicle. We used a cost reduction structure that consisted of five major subsystems (three-type and two-type motor) for parallel hybrid electric vehicle. Especially, we estimated the potential for cost reductions in parallel hybrid electric vehicle as a function of time using the learning curve. Also, we estimated the potentials of cost by depreciation.

  • PDF

An Operation Algorithm for a 2 Shaft Parallel Type Hybrid Electric Vehicle for Optimal Fuel Economy (2축 병렬형 하이브리드 차량의 최저 연비 주행 알고리즘)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.122-130
    • /
    • 2001
  • In this paper, an operational algorithm for a 2-shaft parallel hybrid electric vehicle is suggested for the minimization of operation cost. The operation cost is obtained as a summation of the engine fuel cost and the motor electricity cost. The electrical cost function is estimated in case of motoring, and generating when the recuperation is carried out during the braking. In addition, weight function is introduced in order to maintain the battery state of charge. Based on the operation algorithm, the optimal engine operation point that minimizes the operation cost is obtained with respect to the required vehicle power for every state of charge of battery. The optimal operation point provides the optimal power distribution of the engine and the motor for a required vehicle power Simulation was performed and the fuel economy of the hybrid vehicle was compared to that of the conventional vehicle. Simulation results showed that hybrid vehicle's fuel economy can be improved as much as 45∼48% compared to the conventional vehicle's.

  • PDF

Application of Cost Estimation to Space Launch Vehicle Development Program (우주발사체 개발사업의 비용 추정 현황 및 사례)

  • Yoo, Il-Sang;Seo, Yun-Kyoung;Lee, Joon-Ho;Oh, Bum-Seok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A space launch vehicle system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as mechanical structure, electronics, control, telecommunication, propulsion, material engineering etc. A lot of cost is required to develop the launch vehicle system. A precise planning of R&D cost is very essential to make a success of the launch vehicle development program. Especially in the early development phase of a new space launch vehicle system, cost estimation techniques and analogy from past similar development data are very useful methods to estimate a development cost of the launch vehicle system. Now Korea Aerospace Research Institute is in charge of the KSLV-I (Korea Space Launch Vehicle-I) Program that is a part of Korea National Space program. KSLV-I Program is a national undertaking to develop launch capabilities to deliver science satellites of a 100kg-class into a low earth orbit. It is hereafter, going to plan to develop a new korean space launch vehicle. In this paper, first the development costs of well-known launch vehicles in the world are presented to provide a reference to make a development plan of a new launch vehicle. Second this paper introduces the present status of cost estimation applications at NASA. Finally this paper presents the results from application of a TRANSCOST, a parametric cost model, to derive a cost estimate of a new launch vehicle development, as an example.

Evaluation of Fuel Economy for a Parallel Hybrid Electric Vehicle

  • Park, Dookhwan;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1287-1295
    • /
    • 2002
  • In this work, the fuel economy of a parallel hybrid electric vehicle is investigated. A vehicle control algorithm which yields operating points where operational cost of HEV is minimal is suggested. The operational cost of HEV is decided considering both the cost of fossil fuel consumed by an engine and the cost of electricity consumed by an electric motor. A procedure for obtaining the operating points of minimal fuel consumption is introduced. Simulations are carried out for 3 variations of HEV and the results are compared to the fuel economy of a conventional vehicle in order to investigate the effect of hybridization. Simulation results show that HEV with the vehicle control algorithm suggested in this work has a fuel economy 45% better than the conventional vehicle if braking energy is recuperated fully by regeneration and idling of the engine is eliminated. The vehicle modification is also investigated to obtain the target fuel economy set in PNGV program.

Determination of the Transportation Cycle Time and the Vehicle Size in a Distribution System (물류시스템에서 수송주기와 차량크기의 결정)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2004
  • This paper addresses a model for the transportation planning that determines the transportation cycle time and the vehicle size to minimize the cost in a distribution system. The vehicle routing to minimize the transportation distance of the vehicles is also determined. A distribution system is consisted of a distribution center and many retailers. Products are transported from distribution center to retailers according to transportation planning. A model is assumed that the time horizon is continuous and infinite, and the demand of retailers is constant and deterministic. Cost factors are the transportation cost and the inventory cost, which the transportation cost is proportional to the transportation distance of vehicle when products are transported from distribution center to retailers, and the inventory cost is proportional to inventory amounts of retailers. A transportation cycle time and a vehicle size are selected among respective finite alternatives. The problem is analyzed, and a illustrative example is shown.

KSLV-II Cost Estimate using TRANS COST 7.1 (TRANSCOST 7.1을 적용한 실용위성 발사체 비용추정)

  • Seo, Yun-Kyoung;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.119-125
    • /
    • 2007
  • Space launch vehicle development needs many kinds of technologies synthetically. Nowadays, KARI (Korea Aerospace Research Institute) has developed a space launch vehicle, KSLV-I (Korea Space Launch Vehicle-I), that is able to load with an 100kg payload. After that it plans to develop Korean Space Launch Vehicle. As space launch vehicle becomes more complicate and larger, it needs a scientific and analytic development cost estimation. In this paper a cost estimation for KSLV-II using TRANSCOST 7.1 was studied.

  • PDF

A Study of the Maintenance cost model for the Life Cycle Cost Calculation of the Railroad Vehicle (철도차량 수명유지비용 계산을 위한 유지보수 비용모델 연구)

  • Kim, Jae-Hoon;Jun, Hyun-Kyu;Park, Jun-Seo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.567-573
    • /
    • 2008
  • Life cycle costing is one of the most effective approaches for the cost analysis of long-term life products, like as railroad vehicle. Life cycle costing includes the cost of concept design, development, manufacture, operating, maintenance and disposal. Especially, life cycle costing in the railroad industry has been focused on the maintenance cost. In this paper, we investigated the standard, guide and maintenance information of railroad vehicle. For this purpose, we suggested the cost model of railroad vehicle maintenance information. We also performed maintenance cost analysis on the some sub-system of railroad vehicle for the case study.

  • PDF

Calculation of Maintenance Cost for RCM Analysis of Railway Vehicle (철도차량의 RCM 분석을 위한 유지보수비용 산출방안)

  • Lee, Chang-Hwan;Park, Byoung-Noh;Lim, Sung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1481-1486
    • /
    • 2008
  • To apply more effective the RCM analysis for railway vehicle, the maintenance cost per equipment should be considered together with failure criticality per equipment considered in existing. This paper is described the systematic calculation of maintenance cost considering the RCM analysis of railway vehicle. To calculate the maintenance cost systematically, the cost breakdown structure was established, and basic cost information and calculated cost items were defined. In addition, the linking between calculated cost and RCM analysis was considered. In future, this proposal would be used to analysis of cost effectiveness through RCM analysis of railway vehicle.

  • PDF

A Study of the Maintenance information DB document Template for the Life Cycle Cost Calculation of the Railroad vehicle (철도차량 수명주기비용 계산을 위한 유지보수정보 DB 템플릿에 관한 연구)

  • Kim, Jae-Hoon;Shim, Yeo-Wool;Park, Jun-Seo;Jun, Hyun-Kyu;Kim, Jong-Woon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1097-1104
    • /
    • 2008
  • Life cycle costing is one of the most effective approaches for the cost analysis of long-term life products, like as railroad vehicle. Life cycle costing includes the cost of concept design, development, manufacture, operating, maintenance and disposal. Especially, life cycle costing in the railroad industry has been focused on the maintenance cost. In this paper, we investigated the standard, guide and maintenance information of railroad vehicle. For this purpose, we suggested the unique templates of railroad vehicle maintenance information. We also performed maintenance cost analysis on the some sub-system of railroad vehicle for the case study.

  • PDF

A Model of Dynamic Transportation Planning of the Distribution System Using Genetic Algorithm (유전 알고리듬을 이용한 물류시스템의 동적 수송계획 모형)

  • Chang Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.102-113
    • /
    • 2004
  • This paper addresses the transportation planning that is based on genetic algorithm for determining transportation time and transportation amount of minimizing cost of distribution system. The vehicle routing of minimizing the transportation distance of vehicle is determined. A distribution system is consisted of a distribution center and many retailers. The model is assumed that the time horizon is discrete and finite, and the demand of retailers is dynamic and deterministic. Products are transported from distribution center to retailers according to transportation planning. Cost factors are the transportation cost and the inventory cost, which transportation cost is proportional to transportation distance of vehicle when products are transported from distribution center to retailers, and inventory cost is proportional to inventory amounts of retailers. Transportation time to retailers is represented as a genetic string. The encoding of the solutions into binary strings is presented, as well as the genetic operators used by the algorithm. A mathematical model is developed. Genetic algorithm procedure is suggested, and a illustrative example is shown to explain the procedure.