• Title/Summary/Keyword: Vehicle loading

Search Result 423, Processing Time 0.026 seconds

Estimation of Fatigue Strength in Resistance Spot Weldment of the Vehicle Body (차체 저항 점 용접부 피로수명 예측)

  • 손광재;양영수;조성규;장상균
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • When the vehicle travels in an actual road, resistance spot weldments of the vehicle structure are exposed to complex loading state. Since the fatigue strength in resistance spot weldment of vehicle body can be determined by effect of residual stresses and loading state of driving, estimating actual loading state and considering residual stress effect are needed. In this study, Fatigue stress-fatigue life relation concerned residual stress effect was obtained by thermo elastic plastic finite element analysis. And applied loading in resistance spot weldments of vehicle body was calculated by dynamic analysis. Presumption of fatigue life was performed using proposed method

A Simultaneous Delivery and Pick-up Heterogeneous Vehicle Routing Problem with Separate Loading Area (다품종 독립 적재공간을 갖는 배달과 수거를 동시에 고려한 차량경로문제)

  • Kim, Gak-Gyu;Kim, Seong-Woo;Kim, Seong-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.554-561
    • /
    • 2013
  • As a special topic of the vehicle routing problems (VRP), VRPSDP extends the vehicle routing problem as considering simultaneous pickup and delivery for goods. The past studies have mainly dealt with a only weight constraint of a loading capacity for heterogeneous products. However. this study suggests VRPSDP considering separate loading area according to characteristics of loading species. The objective is to design a set of minimum distance routes for the vehicle routing assignment with independent capacity for heterogeneous species. And then we present a another HVRPSDP model which is easy to utilizes in a unique circumstance that is a guarantee of executing a task simultaneously from the various areas under restricted time and raising an application of vehicles that returns at the depot for the next mission like the military group. The optimal results of the suggested mathematical models are solved by the ILOG CPLEX software ver. 12.4 that is provided by IBM company.

A Experimental Study on the Measurement and Estimation of Vehicle Center of Gravity (차량무게중심의 측정 및 추정에 관한 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2010
  • The center of gravity on vehicle is a fundamentally important point for assessing and measuring the characteristics of vehicle dynamics. Especially, the center of gravity height on vehicles is the closest factor with respect to rollover accidents in a social issue nowadays. In this paper, the center of gravity height in conjunction with vehicle parameters of vehicle weight, driving axle and roof height after measured by vehicle weight and loading location by means of VCGM developed by KATRI with good performance that the accuracy was less than 0.6% and repeatability 0.3% for vehicles being used in the whole world was observed. As a result of study, the location of center of gravity height on vehicle was able to be estimated with only roof height on vehicle.

Occupant Safety Analysis for Wheelchair Bus Development (휠체어 탑승 버스의 승객안전도 분석)

  • Kim, Kyungjin;Shin, Jaeho;Yong, Boojoong;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.

Fatigue Strength Evaluation of Bogie Frame for Power Car (동력차용 대차프레임의 피로강도평가)

  • Lee, Hak-Ju;Han, Seung-U;Augagneur Sylvain;Lee, Sang-Rok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

An Optimization Method of Spatial Placement for Effective Vehicle Loading (효과적인 차량 선적을 위한 공간 배치의 최적화 기법)

  • Cha, Joo Hyoung;Choi, Jin Seok;Bae, You Su;Woo, Young Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.186-191
    • /
    • 2020
  • In this paper, we proposed an optimization technique for efficiently placing vehicles on decks in a vehicle-carrying ship to efficiently handle loading and unloading. For this purpose, we utilized the transformation method of the XML data representing the ship's spatial information, merging and branching algorithm and genetic algorithm, and implemented the function to visualize the optimized vehicle placement results. The techniques of selection, crossover, mutation, and elite preservation, which are used in the conventional genetic algorithms, are used. In particular, the vehicle placement optimization method is proposed by merging and branching the ship space for the vehicle loading. The experimental results show that the proposed merging and branching method is effective for the optimization process that is difficult to optimize with the existing genetic algorithm alone. In addition, visualization results show vehicle layout results in the form of drawings so that experts can easily determine the efficiency of the layout results.

Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study (차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발)

  • 이승준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

Vehicle Routing Problems with Time Window Constraints by Using Genetic Algorithm (유전자 알고리즘을 이용한 시간제약 차량경로문제)

  • Jeon, Geon-Wook;Lee, Yoon-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.75-82
    • /
    • 2006
  • The main objective of this study is to find out the shortest path of the vehicle routing problem with time window constraints by using both genetic algorithm and heuristic. Hard time constraints were considered to the vehicle routing problem in this suggested algorithm. Four different heuristic rules, modification process for initial and infeasible solution, 2-opt process, and lag exchange process, were applied to the genetic algorithm in order to both minimize the total distance and improve the loading rate at the same time. This genetic algorithm is compared with the results of existing problems suggested by Solomon. We found better solutions concerning vehicle loading rate and number of vehicles in R-type Solomon's examples R103 and R106.

The Research of People with Disabilities Satisfaction about Loading Wheelchair while Boarding on Vehicle (장애인의 차량 탑승 시 휠체어 수납에 대한 만족도 조사)

  • Rhee, K.M.;Lee, J.H.;Lee, S.C.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, when wheelchair user get into the vehicle, we have thorough grasp of the problems of loading wheelchair and give effect to suggest conceptual design in relation to develop manufactured goods. We choose 50 participants with disabilities who manual wheelchair or motor scooter users are able to drive own's vehicle, and the method practice in the direct survey. There are some limitations in this study especially in terms of the sampling population. The 88%(n=44) of the participant replied to the driver with disabilities need assistive devices for loading manual wheelchair. They prefer a system that robot arm brings the wheelchair out of the trunk to the driver's seat door.

  • PDF