• 제목/요약/키워드: Venturi scrubber

검색결과 14건 처리시간 0.031초

IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

  • Ali, Majid;Yan, Changqi;Sun, Zhongning;Gu, Haifeng;Wang, Junlong;Khurram, Mehboob
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.203-210
    • /
    • 2013
  • The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate ($Na2S_2O_3$) in water to remove the gaseous iodine ($I_2$) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of $0.99{\pm}0.001$ has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.

벤츄리 스크러버 내의 액체 분사 미립화에 대한 수치적 해석 (Numerical Simulation for Atomization of Liquid Jet in Venturi Scrubber)

  • 박순일;장근식;문윤완;사종엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.37-41
    • /
    • 2004
  • Liquid injection in a Venturi Scrubber creates great effect on the dust-collection efficiency and operation cost of venturi scrubbers. We have developed a model that can numerically simulate atomization of the liquid jet in the Venturi Scrubber. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF

Study of an improved and novel venturi scrubber configuration for removal of radioactive gases from NPP containment air during severe accident

  • Farooq, Mujahid;Ahmed, Ammar;Qureshi, Kamran;Shah, Ajmal;Waheed, Khalid;Siddique, Waseem;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3310-3316
    • /
    • 2022
  • Owing to the rising concerns about the safety of nuclear power plants (NPP), it is essential to study the venturi scrubber in detail, which is a key component of the filtered containment venting system (FCVS). FCVS alleviates the pressurein containment byfiltering and venting out the contaminated air. Themain objective of this research was to perform a CFD investigation of different configurations of a circular, non-submerged, self-priming venturi scrubber to estimate and improve the performance in the removal of elemental iodine from the air. For benchmarking, a mass transfer model which is based on two-film theory was selected and validated by experimental data where an alkaline solution was considered as the scrubbing solution. This mass transfer model was modified and implemented on a unique formation of two self-priming venturi scrubbers in series. Euler-Euler method was used for two-phase modeling and the realizable K-ε model was used for capturing the turbulence. The obtained results showed a remarkable improvement in the removal of radioactive iodine from the air using a series combination of venturi scrubbers. The removal efficiency was improved at every single data point.

오일러-라그랑지 방법을 이용한 벤튜리 스크라버의 압력강하 계산 (Prediction of Pressure Drop in Venturi Scrubber Using the Eulerian - Lagrangian Method)

  • 박순일;장근식;문윤완
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.190-195
    • /
    • 2004
  • The pressure drop in a Venturi Scrubber is predicted using the Eulerian-Lagrangian Method, which is one of the numerical methods to solve the dispersed two-phase flow. KIVA-3V Code is modified to solve the coupled gas-liquid two-phase flow field. The liquid is assumed to be injected through the nozzles with the Rosin-Rammler drop size distribution. The computational results shows good agreement with the experimental data.

  • PDF

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

습식세정장치에서 발생되는 마이크로버블을 이용한 음식물쓰레기 발생 복합악취 처리 (Complex Mal-odor Treatment of Foodwaste with Micro-bubble generated from Enhanced Wet Scrubber)

  • 김예진;정재억;정용준
    • 한국환경과학회지
    • /
    • 제24권1호
    • /
    • pp.73-79
    • /
    • 2015
  • The objective of this work was to treat complex mal-odor of food waste with micro-bubbles from enhanced wet scrubber system, where the pilot plant was operated. Micro bubbles from the enhanced reactor of venturi scrubber were successfully generated through the air atomizing process with high velocity more than 60 m/sec and played an important role in the removal of mal-odor. Mal-odor was effectively changed into the micro-bubble and treated with washing chemicals together. Through establishing two series connection of the reactors, 85.2 % removal efficiency of complex mal-odor was obtained in case of average 940 times of input air. 0.35 kg/hr of sulfuric acid, 0.188 kg/hr of sodium hydroxide and 0.043 kg/hr of hypochlorite were injected for chemical washing.

기체 유동에 수직 분사된 액체의 분해에 대한 수치적 해석 (Numerical Analysis for Breakup of Liquid Jet in Crossflow)

  • 박순일;장근식;문윤완;사종엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1629-1633
    • /
    • 2004
  • Liquid is commonly introduced as transversal jets in venturi scrubber which is one of the gas cleaning equipments. The jet dynamics such as penetration and breakup is of fundamental importance to the dust-collection efficiency. We have developed a model that can numerically simulate the breakup of the liquid jet in crossflow. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF