• Title/Summary/Keyword: Vertical feed

검색결과 82건 처리시간 0.02초

유연성 디스크 정밀연삭 가공중 평면가공에 관한 연구 (A Study on the Flat Surface Generation Using Flexible Disk Grinding)

  • 유송민
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.158-166
    • /
    • 1996
  • In this study, a flexible disk grinding process is applied in order to produce high precision product. A new model was developed considering feed motion along horizontal and vertical direction. Different types of feed speed variation was tested with respect to distinct process stages in order to achieve flat surface. It was observed that highest order polynomial form for both horizontal and vertical feed speed variation among the proposed categories produced surface close to flat one. Disk deflection trend during the process was visualized confirming the proposed scheme. Cutting force and VRR(volume removal rate) was observed as an aid to process planning.

  • PDF

수직형 소형정미기의 벼 도정 특성 -주축회전수, 롤러의 세라믹코팅길이, 이송스크루 피치의 최적 설계조건에 대하여- (Milling Characteristics of Vertical Small Scale Milling Machine for the Rough Rice -Optimum design conditions of main spindle speed, ceramic coating length of roller and feed screw pitch-)

  • 연광석;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • 제26권2호
    • /
    • pp.177-188
    • /
    • 2001
  • This research was carried out to examine the optimum design conditions of a vertical small-scale milling machine where the rough rice is processed directly into the white rice in one pass. Effects of the main spindle speed, feed screw pitch and ceramic coating length of the roller on various milling characteristics such as white rice processing capacity, electric energy consumption, rice temperature increase, broken rice ratio, moisture reduction, outlet force and crack ratio increase were studied. The results are as follows. 1. The maximum white rice processing capacity and the lowest crack ratio increase, were obtained from a machine with specification: main spindle speed of 970rpm having a feed screw pitch of 19㎜. 2. The minimum electric energy consumption was obtained with the main spindle speeds of 900 and 970rpm respectively having a feed screw pitch of 19㎜. 3. The rice temperature was increased as the feed screw pitch decreased and the main spindle speed increased. 4. Broken rice ratio was relatively low with the range of 0.8∼1.3%. 5. Moisture content loss was with the range of 0.05∼0.4%. 6. The highest outlet force was 0.72kg$\_$f/ with 900rpm of the main spindle speed and 19㎜ of the feed screw pitch and the lowest outlet force was 0.18∼0.34kg$\_$f/ with 970rpm of the main spindle speed and 16㎜ of the feed screw pitch. 7. The optimum design conditions for the vertical small-scale milling machine were obtained at 970rpm of the main spindle speed, 19㎜ of the feed screw pitch and 20㎜ of the ceramics coating length.

  • PDF

Ultra Thin 실리콘 웨이퍼를 이용한 RF-MEMS 소자의 웨이퍼 레벨 패키징 (Wafer Level Packaging of RF-MEMS Devices with Vertical feed-through)

  • 김용국;박윤권;김재경;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1237-1241
    • /
    • 2003
  • In this paper, we report a novel RF-MEMS packaging technology with lightweight, small size, and short electric path length. To achieve this goal, we used the ultra thin silicon substrate as a packaging substrate. The via holes lot vortical feed-through were fabricated on the thin silicon wafer by wet chemical processing. Then, via holes were filled and micro-bumps were fabricated by electroplating. The packaged RF device has a reflection loss under 22 〔㏈〕 and a insertion loss of -0.04∼-0.08 〔㏈〕. These measurements show that we could package the RF device without loss and interference by using the vertical feed-through. Specially, with the ultra thin silicon wafer we can realize of a device package that has low-cost, lightweight and small size. Also, we can extend a 3-D packaging structure by stacking assembled thin packages.

진동형 볼피더의 가진력 해석과 적용 (Analysis of Excitation Force and its Application in Vibratory Bowl Feeders)

  • 오석규;배강열
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.70-77
    • /
    • 2020
  • Vibratory bowl feeders are widely utilized to align and feed the parts stacked inside the bowl of a feeder. The electro-magnetic force of the electromagnet in a bowl feeder generates the excitation force for the bowl to vibrate in both the horizontal and vertical directions to continuously feed the parts on the track. The feed rate of the part depends on the associated displacement in each direction during the vibration. Therefore, the excitation force induced by the electromagnet should be estimated in advance to ensure the suitable design of the bowl feeder. In this study, a theoretical solution was developed to calculate the electro-magnetic force of the electromagnet for a bowl feeder. Using the proposed solution, the electro-magnetic forces corresponding to a variation in the input parameters of the electromagnet, such as the voltage, frequency, and air gap, could be obtained. The force values obtained using the theoretical solution exhibited a satisfactory agreement with the results obtained using the finite element method, thereby demonstrating the validity of the approach. Subsequently, the bowl displacements were analyzed using the motion equation for the bowl feeder when the theoretically obtained excitation force were applied to vibrate the feeder. The correlation between the vertical displacements of the bowl and input parameters of the electromagnet could be obtained.

티타늄합금 황삭가공에서 냉각방법에 따른 절삭공구 마모특성에 관한 연구 (A Study on Characteristics of Cutting Tool Wear by Cooling Method in Rough Machining of Titanium Alloy)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.129-134
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace important parts and automobile important parts, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting tool cooling method and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the feed rate, cutting time and spindle speed are raised.

티타늄 가공의 절삭조건에 따른 가공특성에 관한 연구 (A Study on Characteristics of Cutting by Cutting Conditions in Titanium Machining)

  • 김기하
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.84-89
    • /
    • 2013
  • Titanium used in industry has been widely applied for aerospace engine, structures and spacecraft exterior, etc. because the titanium is higher in strength compared to the steel and light in weight compared to the steel. This study is to investigate the effect of cutting depth and cutting time on the spindle speed and feed rate of vertical machining center as a parameter to find the rough cutting time and cutting depth in the medium speed cutting machining of the titanium alloy. It is found that the cutting machining heat are increased as the cutting depth, feed rate, cutting time and spindle speed are raised.

티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구 (A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining)

  • 정화
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

Mock-up실험에 의한 바닥복사 냉방시스템의 온도특성에 관한 연구 (A Study on the Temperature Characteristics of the Floor Cooling System of Mock-up Experimentent)

  • 유호천;이영아
    • 한국태양에너지학회 논문집
    • /
    • 제28권6호
    • /
    • pp.48-57
    • /
    • 2008
  • The research analyzed the distribution of the indoor temperatures of a radiant floor cooling system through mock-up experiments. It investigated the temperature difference of feed water, the vertical temperature difference of indoor air, the temperature difference of floor surface, and so on. The following is the results of the research. First, the research shows that the difference between indoor temperature and outside temperature was the smallest when the temperature of feed water was set at 16$^{\circ}C$. In addition, the temperature changes according to indoor positions (wall, room, floor, and ceiling) were the most uniform. Thus, the research found that the cold water temperature of 16$^{\circ}C$ is the most proper. In addition, it confirmed that the feed water temperature of 18$^{\circ}C$ is effective because the temperature can lower the temperature of a room to 13.55$^{\circ}C$, which is lower than the temperature of a non-cooling mode. Second, an investigation on the temperature distribution of vertical air in indoor space shows that the temperature distribution had a difference of 0.2 to 1.9$^{\circ}C$ on the average, which satisfies the range of 3.0$^{\circ}C$ in the standard of ISO.

오차보정을 위한 초정밀 테이블의 5 자유도 운동오차 측정 (Measurement of 5 DOF Motion Errors in the Ultra Precision Feed Tables for Error Compensation)

  • 오윤진;박천홍;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.672-676
    • /
    • 2004
  • In this paper, measuring system of 5 DOF motion errors are proposed using two capacitive type sensor, a straight edge and a laser interfoerometer. Yawing error and pitching error are measured using the laser interferometer, and rolling error is measured by the reversal method using a capacitive type sensor. Linear motion errors of horizontal and vertical direction are measured using the sequential two point method. In this case, influence of angular motion errors is compensated using the previously measured angular motion errors. In the horizontal direction, measuring accuracy is within 0.05 $\mu$m and 0.27 arcsec, and in the vertical direction, it is within 0.15 $\mu$m and 0.5 arcsec. From these results, it is confirmed that the proposed measureing system is very effective to the measurement of 5 DOF motion errors in the ultra precision feed tables.

  • PDF

Vertical Integration of MM-wave MMIC's and MEMS Antennas

  • Kwon, Young-Woo;Kim, Yong-Kweon;Lee, Sang-Hyo;Kim, Jung-Mu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제6권3호
    • /
    • pp.169-174
    • /
    • 2006
  • In this work, we demonstrate a novel compact mechanical beam steering transmitter based on a direct vertical integration of a 2-D MEMS-based mechanical beam steering antenna with a VCO on a single silicon platform. By eliminating the long feed lines and waveguide metal blocks, the radiation pattern has been improved vastly, resulting in an almost ideal pattern at every scan angle. The losses incurred by the feed lines and phase shifters are also eliminated, which allows the transmitter to be implemented using only a single VCO. The system complexity has been greatly reduced with a total module size of only 1.5 cm ${\times}$ 1.5 cm ${\times}$ 0.4 cm. This work demonstrates that RF MEMS can be a key enabling technology for high-level integration.