• Title/Summary/Keyword: Vessel engine room

Search Result 28, Processing Time 0.025 seconds

The Diagnosis and Evaluation of Vibration and Noise in Vessel (선체에서 발생하는 진동과 소음의 진단 및 평가)

  • Gu, Dong-Sik;Lee, Jeong-Hwan;Choi, Byeong-Keun;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2008
  • Most of vessels are not evaluated for their vibration and noise effects to human body. The vibration and noise generated by engine and auxiliary machine in vessel is a negative element for seamen. Therefore, in this paper, the diagnosis and evaluation of vibration and noise from vessel is accomplished by a shipbuilding corporation. The vibration and noise transferred from engine room and auxiliary machine was measured during the steady-state operation, and the vibration and noise map of vessel was made. Also, in order to evaluate the ship environment for human, the diagnosis is carried out on the base of measurement results.

Design of PTZ Camera-Based Multiview Monitoring System for Efficient Observation in Vessel Engine Room (선박 기관실의 효율적인 감시를 위한 PTZ 카메라 기반의 멀티뷰 모니터링 시스템 설계)

  • Kim, Heon-Hui;Hong, Sang-Jun;Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1129-1136
    • /
    • 2021
  • A pan-tilt-zoom (PTZ) camera-based monitoring system for efficient monitoring in the engine room of a vessel was designed. A number of places exist where traditional analog instruments are still used in vessel engine rooms, and blind spots closely related to safety exist, for which flooding or fire is a concern. A camera-based monitoring system that guarantees a wide range at a relatively fast cycle for these monitoring points can be an effective alternative to enhance the safety of a vessel. Therefore, a multiview monitoring system is proposed in which the functions of the existing PTZ camera are further strengthened using a software. The monitoring system comprises four modules: camera control, location registration, traversal control, and multiview image reconstruction. The effectiveness of the method was evaluated through a series of experiments in an engine room environment.

A Numerical Study on Smoke Behavior of Fishing Vessel Engine Room (어선 기관실의 연기 거동에 관한 수치해석 연구)

  • JANG, Ho-Sung;JI, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.683-690
    • /
    • 2021
  • The ventilation system of the engine room of a ship is generally installed to supply the combustion air necessary for the internal combustion engine and to remove the heat source generated in the engine room, and it must satisfy the international standard (ISO 8861) for the design conditions and calculation standards for the ventilation of the ship engine room. The response delay of the ventilation system including the fire detector is affected by the airflow formed inside the area and the location of the fire detector. In this study, to improve the initial fire detection response speed of a fire detector installed on a fishing vessel and to maintain the sensitivity of the installed detector, the smoke behavior was simulated using the air flow field inside the engine room, the amount of combustion air in the internal combustion engine, and the internal pressure of the engine room as variables. Analysis of the simulation results showed that reducing the flow rate in the air flow field and increasing the vortex by reducing the internal pressure of the engine room and installing a smoke curtain would accelerate the rise of the ceiling of the smoke component and improve the smoke detector response speed and ventilation system.

A Study on the Characteristics of Differential Pressure According to Main Engine Load and a Process of Supply Air For Combustion (컨테이너 선박의 엔진부하와 엔진 연소공기 급기방식에 따른 기관실 차압 특성에 관한 연구)

  • Koo, Keun-Hoe;Sung, Chi-Un;Hwang, Yoo-Jin;Lee, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.822-826
    • /
    • 2009
  • In case of engine room of ship, it uses type 2 ventilation system which supplies outside air forcibly by engine room ventilation fan, and naturally discharges air to outlet through low-pressed casing. The advantage of type 2 ventilation is that it makes inside with bi-pressure status to discharge contaminated materials to outside naturally. However, there is a phenomenon that pressure is greatly different between outside and inside due to huge amount of air supply by engine room ventilation fan. Therefore, we went aboard a container vessel which is on test run to analyze differential pressure with micronanometer by engine load and by combustion air supply method of engine. As a result, as engine load decreases (50, 75, 100%), the differential pressure between outside and inside tends to increase by 35% average, and the difference of pressure was 6.5 times maximum by combustion air supply method of engine.

THE STUDY ON THE NOISE IN THE VESSEL (선박소음에 관한 연구)

  • PARK Jung-Hee;KIM Sang-Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.202-207
    • /
    • 1975
  • During the term of June, 7 to August 11, the noises in the maine engine room in terms of the r. p. m. of the Pung-Yang Ho (4,500 H. P.), the Chuk-Yang Ho (3,800 H. P.), the Dong-Bang Ho (3,000 H. P.), the Oh-Dae San Ho (2,690 H, P.), the Kwan-Ak-San Ho (1,000 H. P.) and the Back-Kyung Ho (850 H. P.) (Refer to Table 1) were measured with the use of sound level meter, which has measuring range 37-140 dB and the results obtained are as follows : 1. Capacity of the engine room becomes large according to the total H. P. of the main engine, but the vessels are using of a type of engine, i.e., 6 cylinder, and thus the noise, pressure has shown a tendency to become lower except Kwan-Ak-San Ho, Chuk-Yang Ho and Dong Bang Ho where the noise pressure was higher by 3 dB than curve of mean value. 2. The maximum noise pressure appeared even before the main engine reached the maximum r. p. m. and while the percentage of the r. p. m. varied depending on the vessel, the maximum noise appeared at around the $67-75\%$ of the r. p. m. 3. The maximum of noise pressure in the respective engine room ranged between 93.5-105 dB while it was between 72-81 dB at the fish process room in the stern trawl vessel where the oral communications were possible.

  • PDF

Review of Shock Test Standards for Unifying Specification of Naval Equipments (함정탑재장비 규격통일화를 위한 충격시험기준 고찰)

  • Kim, Young-Ju;Kim, Joon-Won
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.214-215
    • /
    • 2005
  • Naval equipments are installed and used for naval vessel with different environmental conditions comparing to the commercial vessel, for example, high engine power per ship displacement size, severe vibration and shock due to high running speed and explosion from naval gun's bombardment and underwater weapons. Therefore, those equipments must be installed on shipboard with small spaces, high ambient temperature around engine room and which are required be fabricated with high resistances of vibration, shock and heat resources. But in case of commercial vessel, the performances of their recent equipments naval have been improved continuously due to the technology development of domestic shipbuilding and shipboard equipment industries, together with the related fundamental industries i.e, metal, steel and electronic industries, to an international level since 1970. With these results, it became possible to unify the specifications of shipboard equipments for the commercial and military vessels(Dual-Use). In this study, vibration and shock test standards for the commercial and military vessels will be compared and reviewed technically.

  • PDF

A Study on Noise Control and Verification of High Pressure Steam System Using Experimental Method (실험적 방법을 이용한 고압증기 시스템의 방음설계 및 검증에 관한 연구)

  • Seok, H.I.;Lee, D.K.;Jeong, T.S.;Heo, J.H.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.112-116
    • /
    • 2011
  • The noise analysis is usually carried out in the early structure design stage for the main areas in a vessel such as an accommodation, an engine room, HVAC System and etc. If the analysis results are higher than the noise limits based on guideline, appropriate countermeasures are established to reduce noise levels and applied to the vessel. But excessive noise induced the main or auxiliary equipment and high pressure steam system is very difficult to check in the initial design stage, and local noise problems frequently appear in actual vessels. This paper deals with excessive noise of the engine control room on LNG carrier. It includes the cause analysis of excessive noise, the countermeasure, and verification. Also, it proves suitability of the countermeasure through the on-board test.

  • PDF

Nonlinear Structural Analysis of E/R Longitudinal Frame of Ice Class Vessel (ICE CLASS가 적용되는 선박의 E/R longitudinal frame 비선형 구조 해석)

  • Cho, Sung-Am;Leem, Hyo-Kwan;Kim, Ho-Kyeong
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.40-45
    • /
    • 2006
  • For ships of ice class, finish Maritime Administration(FMA) requires brackets on intersections between longitudinal frames and the web frames within the ice-strengthened area. The main object of this paper is to verify ultimate load carrying capacity of longitudinal frame without brackets of engine room region of 74,100 DWT Product Oil Tanker. Comparative approach between proposed structures from builder (the proposed structure) and structures satisfying the Finnish-Swedish ice class rules (the rule structure) is used for the analysis.

  • PDF

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU (해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석)

  • Jung, Young In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.610-616
    • /
    • 2020
  • This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.

Consideration of Structural Damage of Fresh Water Tank for 2,600 TEU Container Vessel (2,600 TEU Container Vessel 의 Fresh Water Tank 구조손상 사례 고찰)

  • Shin Sung-Kwang;Ahn Hyung-Joon;Choi Eui-keol;Koh Myeong-Seob;Leem Hyo-Kwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.216-221
    • /
    • 2005
  • Many tanks such as a fresh water tank, an aft peak tank and oil tanks are arranged in the engine room and aft part areas of the ship. By added mass effect of the fluid inside the tanks, the natural frequency will be changed according to filling height of the tank. For this reason, there is possibility of occurrence of excessive vibration by resonance between natural frequencies of local structure and excitation frequencies of the propeller or main engine. Therefore, calculation of natural frequencies is required for structure for many types of tank which are contacting with water or oil to consider added mass effect for anti-resonance design at design stage. In this study, a case of structure damage on the fresh water tank for 2600 TEU container vessel is introduced. In addition, natural frequency analysis and vibration measurement have been performed to investigate vibration characteristics for excessive vibration control.

  • PDF