• Title/Summary/Keyword: Vibratory pile driver

Search Result 8, Processing Time 0.027 seconds

Prediction of Penetration Rate of Sheet Pile Driven by Vibratory Pile Driver (진동타입기에 의한 쉬트파일의 관입속도 예측)

  • Lee Seung-Hyun;Kim Byung-Il;Lee Jong-Ku;Yoon Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.679-683
    • /
    • 2006
  • Numerical integration-based program which simulates motion of pile driven by vibratory pile driver was developed for predicting rate of penetration of pile. Rate of penetration of pile calculated from developed program was compared with those of field test. As pile penetration depth increases, the difference between predicted rate of penetration and measured rate of penetration decreases. It was concluded that the reason for large difference between the predicted value and the measured value at shallower depths was attributed to decrease of vertical compressive force caused from relatively larger flexural and torsional motion of sheet pile.

  • PDF

Characteristics of Behavior of Steel Sheet Pile installed by Vibratory Pile Driver (진동타입기에 의해 시공되는 강널말뚝의 거동특성)

  • Lee, Seung Hyun;Kim, Byoung Il;Kim, Zu Cheol;Kim, Jeong Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.27-35
    • /
    • 2010
  • Instrumented steel sheet piles being driven by vibratory pile driver were installed in granular soil deposit and behaviors of the sheet piles were investigated. One of the instrumented steel sheet pile was installed without clutch and the other was installed with clutch. Sheet pile with clutch means that of installed in connection with pre-installed sheet pile. Penetration rates of sheet piles measured from depth measuring drum has shown that interlock friction had great effect on penetration speed of sheet pile. Clutch friction shows irregular distribution along the depths of penetration and its magnitude was estimated as 19.1kN/m. According to the accelerations obtained from accelerometer, it was seen that steel sheet pile behaviored nearly as a rigid body. Efficiency factor of an isolated sheet pile was 0.42 and that of the connected sheet pile was 0.71. Shapes of dynamic load transfer curves obtained from analysis of measuring devices was similar to those suggested by Dierssen.

A Study on the Effect of Suspension of Vibro Pile Driver on Pile Driving System (진동타입기의 서스펜션이 진동시스템에 미치는 영향에 대한 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.826-831
    • /
    • 2007
  • Analytic solutions for pile driving system with and without suspension were presented and influences of suspension on the driving system were discussed. According to the results of analysis, magnitude of amplitude of vibratory pile driver with suspension increases as the mass of the suspension increases and soil dampening decreases. As a results of comparing power of vibratory pile driver with suspension with that of design criterion, power versus soil dampening reaches a peak value and then declines. The maximum power increases with mass ratio and the power is always below that of the Vulcan design criterion.

  • PDF

Driveability Analysis of U-type Sheet Pile using WEAP Program (WEAP 프로그램을 이용한 U형 널말뚝의 항타관입성 해석)

  • Kim Byoung-Il;Kim Jae-Kyu;Lee Seung-Hyun;Lee Jong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.671-678
    • /
    • 2006
  • Vibratory pile driving has an advantage of reduced noise pollutions compared to impact pile driving and it has been very widely used in the installation of sheet piles. However, very little has been known about the driveability characteristics of sheet pile under vibratory driving. So, the proper sheet piles and vibratory hammer for an given soil profile and depth are determined on a empirical basis. In this study. the driveability of U-type sheet piles are analytically estimated using the commercial WEAP(Wave Equation Analysis of Piles) program. The WEAP analysis shows that penetration rate of sheet pile decreases as N value increases. And if penetration length is not over 20 meters, the rate of penetration decreases as the sectional area of sheet pile increases.

  • PDF

Influence of Bias Weight of Vibratory Pile Driver on Load Transfer Characteristics of Piles (진동타입기의 사하중이 말뚝의 하중전이 특성에 미치는 영향)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5268-5273
    • /
    • 2013
  • Technique for analyzing pile installed by vibratory pile driver was developed and results of analysis obtained from variation of bias weight were studied. It can be seen from load transfer curve for dynamic skin friction that load transfer curve shift to downward as bias weight increases. Shape of load transfer curve for dynamic skin friction becomes closer to shape of coil as the bias weight decreases. Magnitudes of toe resistances were not affected by the bias weight. Shape of load transfer curve for dynamic toe resistance shows the similar tendency as the load transfer curve for skin friction exhibits. Vertical displacement increases as the bias weight increases and the shape of vertical displacement with time shows more distinct shape of wave.

Prediction of Penetration Rate of Sheet Pile Using Modified Ramberg-Osgood Model (수정 Ramberg-Osgood 모델을 이용한 널말뚝의 관입속도 예측)

  • Lee, Seung-Hyun;Kim, Byoung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2010
  • Dynamic soil resistances were simulated by modified Ramberg-Osgood model in order to predict penetration rate of sheet pile installed by vibratory pile driver. Various factors which characterize modified Ramberg-Osgood model were determined considering the shapes of dynamic soil resistance curves obtained from field test and standard penetration value (N value) was used as parameter that relates field test results to the suggested model. Penetration rates calculated by analytical model were smaller than those of field test and penetration times were vice versa. Therefore, predicted penetration rate and penetration time by analytical model are more conservative than those of filed test.

JV Rock Driving Method (JV 공법)

  • Kim, Kwang-Il;Inoue Hajimu;Toshio Teraoka;Yeo, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.41.1-44
    • /
    • 1995
  • The JV method is an epochal civil engineering style that boasts of significant pile driving power through low-vibration works by ideally combining the high pressure water injected from the water jet cutter and the vibrations combining from the vibratory pile driver extractors. As a result, you are ensured stable and safe pile driving and extraction in bedrocks that were previously impossible with conventional machines and methods. The other advantage is its high performance and a low-pollution characteristis that is ensured by suppressing ground vibrations. This is a very important factor since it often becomes an issue upon civil engineering in the city. With the addition of this method. the range of steel pipe pile, steel sheet pile and other steel pile use has been drastically expanded. Other advantages of this method incldes accurate works, shortening of the construction period and improved work performance. Since the minimun amount of high pressure water is used to drill the ground, it not only loosens the ground, but also cuts the ground at the tip of the pile to improve driving works.

  • PDF

Parametric Study on Lateral Vibration Model of Steel Sheet Pile (강널말뚝의 횡방향 진동모델에 대한 매개변수 연구)

  • Lee, Seung-Hyun;Kim, Byung-Il;Kim, Zu-Cheol;Kim, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1047-1052
    • /
    • 2010
  • Influence of lateral spring constant on energy dissipation and load reduction factor with erespect to lateral vibration of steel sheet pile installed by vibratory pile driver. Energy dissipation and load reduction factor varying with free length of steel sheet pile are more affected by eccentricity than flexural rigidity of steel sheet pile regardless of the magnitudes of lateral spring constants. Load reduction factors were converged when lateral spring constant was equal or larger than 10000N/m.