• Title/Summary/Keyword: Vicker%27s hardness

Search Result 7, Processing Time 0.026 seconds

치과주조용 금-은-팔라듐합금의 물리적 특성에 관한 연구

  • Kim, Cheol-We
    • The Journal of the Korean dental association
    • /
    • v.20 no.12 s.163
    • /
    • pp.1073-1081
    • /
    • 1982
  • The purpose of this study was to measure and compare the tensile strengths, elongation and Vicker's hardness values by heat treatments of three·commercial dental casting gold-silver-palladium alloys(Type A,B and G-50 alloys) used in Korea. Instron universal testing instrument and Vicker's hardness tester were used to determine their physical properties. The following results were obtained with the alloys tested. 1. It was determined that the tensile strengths generally tended to increase as the hardened condition (55.50 - 72.98 Kg/mm₂)than in softened condition (28.75 - 41.16 Kg/mm₂). 2. The results indicated that the elongation was the highest in the softened condition(12.30 - 27.0 %), and was the smallest in the hardened condition (3.6 - 5.8 %). 3. It was found that the Vicker's hardness number was the greatest in type G-50 hardened alloys (304.0), and the smallest in the type A softened alloys (130.0).

  • PDF

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

Microstructural Changes of OFC according to the Processing Number of Multi-Axial Diagonal Forging (MADF) (다축대각단조(MADF) 가공횟수에 따른 OFC의 미세조직 변화)

  • Kim, S.T.;Kwon, S.C.;Kim, D.V.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.347-355
    • /
    • 2018
  • This study investigated the effects of the processing number of multi-axial diagonal forging (MADF) on the microstructural changes of OFC fabricated by MADF processes. The as-extruded OFC was cut to $25mm^3$ cube for the MADF processes. The MADF process consists of plane forging with a thickness reduction of 30% and diagonal forging with a diagonal forging angle of $135^{\circ}$. In order to analyze the microstructural evolutions according to the number of repetitions, 1, 2, 3 and 4 cycles of the MADF process were performed. OFC specimens were successfully deformed without surface cracking for up to 4 cycles of MADF. The grain size, average misorientation and average grain orientation spread (GOS) of MADF processed materials were analyzed using EBSD technique and their Vicker's hardness were also measured. The results showed that MADF process effectively refined the microstructure of OFC with initial average grain size of $84.2{\mu}m$. The average grain sizes of specimens MADF processed for 1, 2, 3, 4 cycles were refined to be $8.5{\mu}m$, $2.2{\mu}m$, $1.5{\mu}m$, $1.1{\mu}m$, respectively. The grain refinement seemed to be saturated when OFC was MADF processed over 2 cycles. In the case of specimens subjected to two or more cycles of MADF, the degree of decrease in average grain size was drastically reduced as the number of cycles increased due to softening phenomena such as dynamic recovery or dynamic recrystallization during processing. The degree of increase in average Vicker's hardness was also dramatically reduced as the number of cycles increased due to the same reason.

EFFECT OF LIGHT SOURCE AND SHADE ON DEPTH OF CURE OF COMPOSITES (중합광원과 레진 색상이 복합레진의 중합깊이에 미치는 영향)

  • Na, Joon-Sok;Jeong, Sun-Wa;Hwang, Yun-Chan;Kim, Sun-Ho;Yun, Chang;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.6
    • /
    • pp.561-568
    • /
    • 2002
  • Purpose of this research is estimating polymerization depth of different source of light. XL 3000 for halo-gen light, Apollo 95E for plasma arc light and Easy cure for LED light source were used in this study. Different shade (B1 & A3) resin composites (Esthet-X, Dentsply, U.S.A.) were used to measure depth of cure. 1, 2, and 3 mm thick samples were light cured for three seconds, six seconds or 10 seconds with Apollo 95E and they were light cured with XL-3000 and Easy cure for 10 seconds, 20 seconds, or 40 seconds. Vicker's hardness test carried out after store samples for 24 hours in distilled water. Results were as following. 1. Curing time increases from al1 source of lights, oui$.$ing depth increased(p<0.05). 2. Depth (that except 1mm group and 2mm group which lighten to halogen source of light) deepens in all groups, Vickers hardness decreased(p<0.05). 3. Vicker's hardness of A3 shade composite was lower in all depths more than B1 shade composites in group that do polymerization for 10 seconds and 20 seconds using halogen source of light(p<0.05), but group that do polymerization lot 40 seconds did not show difference(p>0.05). 4. Groups that do polymerization using Plasma arc and LED source of light did not show Vicker's hardness difference according to color at surface and 1mm depth(p>0.05), but showed difference according to color at 2mm and 3mm depth(p<0.05). The results showed that Apollo 95E need more polymerization times than manufacturer's recommendation (3 seconds), and Easy cure need polymerization time of XL-3000 at least.

A Study on Microstructure and Mechanical Properties of IF Steel Cube Fabricated by Multi-Axial Diagonal Forging Ver.1 and Ver.2 Processes (다축대각단조(MADF) Ver.1 및 Ver.2 공정으로 가공한 IF Steel의 미세조직 및 기계적 성질에 대한 연구)

  • Jeong, D.H.;Jo, Y.Y.;Kwon, S.C.;Kim, S.T.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.30 no.6
    • /
    • pp.306-310
    • /
    • 2021
  • In this study, IF steel, which has a body-centered cubic (BCC) crystal structure, was fabricated as a 25 mm-long cube, and then processed for one cycle without intermediate heat treatment by applying MADF Ver.1 and Ver.2 processes. MADF processing was performed with graphite lubrication for each pass at room temperature. The development of the microstructure and texture was analyzed and compared by the location of the specimen using EBSD measurements of the IF steel. Vickers hardness test and miniature tensile test were also performed to analyze the mechanical properties. The coarse grain size of 742.6 ㎛ of the as-received IF steel was refined to a grain size of 53.0 ㎛ after one cycle of MADF Ver.1 processing and 27.0 ㎛ after MADF Ver.2 processing. Vicker's hardness of the as-received IF steel at 94 Hv was increased to 185.6 Hv and 191.2 Hv after one cycle of MADF Ver.1 and Ver.2 processing, respectively.

Studies of Refractive Index and Hardness from the structures in Quarternary Li2O-B2O3-Al2O3-SiO2 Glasses (4성분 Li2O-B2O3-Al2O3-SiO2 유리들의 구조로부터 굴절률과 경도 연구)

  • Moon, Seong-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.27-31
    • /
    • 2002
  • Quarternary $Li_2O-B_2O_3-Al_2O_3-SiO_2$ glasses were fabricated by the function of $R({\equiv}Li_2Omole%/B_2O_3mole%)$ and $K({\equiv}(Al_2O_3mole%+SiO_2mole%/B_2O_3mole%)$. The structures of these glasses were investigated through refractive index and Vicker's hardness. The refractive index increased as the increase of the polarizability in the glass network. In the region of low $Li_2O$ content, the refractive index increased due to the increase of the polarizability in the glass network but, in the region of high $Li_2O$ content, the rate of increase of the refractive index decreased due to the increase of the molar volume caused by the formation of $BO_3{^-}$ units with relatively high molar volume. And, the refractive index decreased as the increase of $Al_2O_3+SiO_2$ content with the molar volume in the glass network. The increase and decrease of vicker's hardness values for those glasses depended on the fraction of tetrahedral $BO_4$ units and it of triangle $BO_3{^-}$ units with non-bridging oxygen, respectively.

  • PDF

Gold-Silver mineals and the chemical environments of some gold-silver deposits, Republic of Korea(I) -Cheongju gold-silver mine- (한국(韓國) 일부(一部) 금(金)·은(銀) 광상(鑛床)에서 산출(産出)되는 금(金)·은(銀) 광물(鑛物)과 광상(鑛床)의 생성조건(生成條件)(I) -청주(淸州) 금(金)·은(銀) 광산(鑛山)-)

  • Lee, Hyun Koo;Choi, Jin Woo
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 1988
  • The Cheongju gold-silver mine is located at approximately $36^{\circ}28^{\prime}$north latitude and $127^{\circ}31^{\prime}$ east longitude in the Cheongju City of the Chung cheong bug Do, South Korea. Gold-Silver bearing hydrothermal quartz veins, occur in Cheongju Granit of Jurassic age. K-Ar isotope data for sericite in quartz vein indicate that the Au-Ag mineralization took place in early Cretaceous ($97.5{\pm}2.18$ MA. Park, et ai, 1986). Three stage of mineralization recognized anre, from early to later, (I) Sulide stage: pyrite, arsenopyrite, pyrrhotite (Hpo), sphalerite, chalcopyrite, electrum and quartz (II) Electrum stage: pyrite, sphalerite, galena, chalcopyrite, electrum and quartz. (III) Silver mineral stage: pyrite, marcasite, pyrrhotite (Mpo), sphalerite, galena, electrum, native silver argentite, fluorite, calcite and quartz. In this paper, mode of occurrences and chemical compositions of electum and native silver have been investigated by means of microscope and EPMA. Electron probe microanalysis shows that an individual grain of electrum is almost homogeneous in composition. Silver content of electrum ranges from 44.7-67.1 atom.%. Gold content of native silver ranges below 0.2 atom. %. Vicker's hardness number (VHN) of electrum and native silver ranges $78.2-81.8kg/mm^{2}$ respectively. The filling temperature of fluid inclusions in quartz ranges from $130-280^{\circ}C$. On the basis of arsenpyrite geothemometer, the equilibrium temperature and sulfur fugacity of the pyrite-arsenopyrite-pyrrhotite(Hpo) assemblage is assumed to be in ange from $300-310^{\circ}C$ and $10^{-10}$ to $10^{-11}$ atm. The estimated ore reserviors on Cheongju mine area are calculated to 8000 T/M, averaing 8.6g/t Au, 27.8 g/t Ag, 1.25% Pb, l.65% Zn.

  • PDF