• Title/Summary/Keyword: Viscoelasticity

Search Result 287, Processing Time 0.031 seconds

THE EFFORT OF VARIOUS MIXING METHODS ON DYNAMIC VISCOELASTICITY OF A TEMPORARY SOFT LINING MATERIAL; COE-COMFORT

  • Ryu Hyun-Ju;Bae Hanna-Eun-Kyong;Shim June-Sung;Lee Seok-Hyung;Moon Hong-Suk;Chung Mun-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.641-646
    • /
    • 2004
  • Statement of Problem. Temporary soft relining materials are used in a diverse clinical situations such as tissue conditioner, relining material, functional impression by varying its viscoelasticity. However, reproduction of consistent viscoelasticity has been not possible. Materials and methods. Considering setting mechanism of this material, this study has measured the effect of varying amount of void in dynamic viscoelasticity of soft relining material, with three different mixing methods. In each methods 10 specimens were made and subjected to dynamic viscoelastic test which were measured at specific times over period of 72 hours. Results. The analysis of the result shown that there was no statistically significant differences between different mixing methods. Conclusion. Different mixing methods had no effect over control of viscoelasticity of soft lining material. Further research is recommended for under similar oral environmental condition.

Dynamic Viscoelasticity of Heat Treated Wood (열처리(熱處理) 목재(木材)의 동적점탄성(動的粘彈性))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.13-20
    • /
    • 1986
  • The effect of heat treatment on the dynamic viscoelasticity of the woods of Picea sitchensis and Paulownia coreana which have been for musical instruments was investigated. The treatment was made in a temperature range of 60-180$^{\circ}C$ for periods of 3 hours to 24 hours. The results obtained are summarized as follows: Moisture absorption decreased with increasing temperature. Dynamic Young's modulus decreased with increasing temperature and hours. Dynamic viscoelasticity decreased with increasing moisture content, but internal friction increased with increasing amount of moisture content.

  • PDF

ERROR ESTIMATE OF EXTRAPOLATED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE VISCOELASTICITY TYPE EQUATION

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.311-326
    • /
    • 2011
  • In this paper, we adopt discontinuous Galerkin methods with penalty terms namely symmetric interior penalty Galerkin methods, to solve nonlinear viscoelasticity type equations. We construct finite element spaces and define an appropriate projection of u and prove its optimal convergence. We construct extrapolated fully discrete discontinuous Galerkin approximations for the viscoelasticity type equation and prove ${\ell}^{\infty}(L^2)$ optimal error estimates in both spatial direction and temporal direction.

Numerical investigation of the effects angles of attack on the flutter of a viscoelastic plate

  • Sherov, A.G.;Khudayarov, B.A.;Ruzmetov, K.Sh.;Aliyarov, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • As is shown in the paper, the Koltunov-Rzhanitsyn singular kernel of heredity (when constructing mathematical models of the dynamics problem of the hereditary theory of viscoelasticity) adequately describes real mechanical processes, best approximates experimental data for a long period of time. A mathematical model of the problem of the flutter of viscoelastic plates moving in a gas with a high supersonic velocity is given. Using the Bubnov-Galerkin method, discrete models of the problem of the flatter of viscoelastic plates flowed over by supersonic gas flow are obtained. A numerical method is developed to solve nonlinear integro-differential equations (IDE) for the problem of the hereditary theory of viscoelasticity with weakly singular kernels. A general computational algorithm and a system of application programs have been developed, which allow one to investigate the nonlinear dynamic problems of the hereditary theory of viscoelasticity with weakly singular kernels. On the basis of the proposed numerical method and algorithm, nonlinear problems of the flutter of viscoelastic plates flowed over in a gas flow at an arbitrary angle are investigated. In a wide range of changes in various parameters of the plate, the critical velocity of the flutter is determined. It is shown that the singularity parameter α affects not only the oscillations of viscoelastic systems, but the critical velocity of the flutter as well.

Dynamic Viscoelasticity of Heat-Treated Bamboo (열처리(熱處理) 죽재(竹材)의 동적점탄성(動的粘彈性))

  • Hong, Byung-Wha;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.67-73
    • /
    • 1995
  • This study was undertaken to investigate the effect of heat treatment on the dynamic viscoelasticity of three species of Phyllostachys bambusoides, Phyllostachys nigra var. henonis and Phyllostachys pubescens, grown in southern Korea. The bamboo was treated for 3~24 hours at $60{\sim}180^{\circ}C$, and then was treated in a climatic chamber for 3~48 hours at $40^{\circ}C$ and 95% relative humidity. The results obtained are summarized as follows : 1. Dynamic Young's modulus decreased with increasing temperature and duration of the heat treatment. 2. Internal friction decreased with increasing treatment duration. 3. Moisture absorption decreased with increasing temperature and duration of the heat treatment. 4. Dynamic viscoelasticity decreased, whereas internal friction slowly increased, with increasing moisture content.

  • PDF

Measurement of Dynamic Viscoelasticity of In-vivo Human Skin (In-vivo 피부의 동적 점탄성 측정)

  • Kwon H.J.;Kwon Y.H.;Jeong C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.525-526
    • /
    • 2006
  • The products designed by human sensibility and ergonomics are given good impression. Especially the touch feeling on the human skin is very useful sensibility for quality of products. Elasticity and viscosity of human skin is very important element in product design based on ergonomics. In this paper, we describe a sophisticated method for measurement of dynamic viscoelasticity characteristics of human skin. For this measurement, we developed a measurement system assembled with load cell, actuator, amplifier and data acquisition system. The $MATLAB^{TM}$ is used to analyze the data and fit a approximation curves.

  • PDF

The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

  • Ahn, Chi Bum;Kang, Yang Jun;Kim, Myoung Gon;Yang, Sung;Lim, Choon Hak;Son, Ho Sung;Kim, Ji Sung;Lee, So Young;Son, Kuk Hui;Sun, Kyung
    • Journal of Chest Surgery
    • /
    • v.49 no.3
    • /
    • pp.145-150
    • /
    • 2016
  • Background: Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods: Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous $O_2$ saturation, and lactate were measured. Results: The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion: After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.

Computing transient flows with high elasticity

  • Roger I. Tanner;Xue, S-C
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.143-159
    • /
    • 2002
  • Although much progress has been made in the computation of Eulerian steady flows with high viscoelasticity, less work has been done for the case of transient flows. Because of their importance in injection moulding, blow moulding and other forming processes, as well as their Intrinsic interest, we believe more attention should be focussed in this area. Hence in this paper we review progress in unsteady flow computations with high elasticity, and show some new results in this area.

ERROR ESTIMATES OF SEMIDISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR THE VISCOELASTICITY-TYPE EQUATION

  • Ohm, Mi-Ray;Lee, Hyun-Young;Shin, Jun-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.829-850
    • /
    • 2012
  • In this paper, we adopt symmetric interior penalty discontinuous Galerkin (SIPG) methods to approximate the solution of nonlinear viscoelasticity-type equations. We construct finite element space which consists of piecewise continuous polynomials. We introduce an appropriate elliptic-type projection and prove its approximation properties. We construct semidiscrete discontinuous Galerkin approximations and prove the optimal convergence in $L^2$ normed space.