• Title/Summary/Keyword: Vision System

Search Result 3,577, Processing Time 0.028 seconds

A real-time vision system for SMT automation

  • Hwang, Shin-Hwan;Kim, Dong-Sik;Yun, Il-Dong;Choi, Jin-Woo;Lee, Sang-Uk;Choi, Jong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.923-928
    • /
    • 1990
  • This paper describes the design and implementation of a real-time, high-precision vision system and its application to SMT(surface mounting technology) automation. The vision system employs a 32 bit MC68030 as a main processor, and consists of image acquisition unit. DSP56001 DSP based vision processor, and several algorithmically dedicated hardware modules. The image acquisition unit provides 512*480*8 bit image for high-precision vision tasks. The DSP vision processor and hardware modules, such as histogram extractor and feature extractor, are designed for a real-time excution of vision algorithms. Especially, the implementation of multi-processing architecture based on DSP vision processors allows us to employ more sophisticated and flexible vision algorithms for real-time operation. The developed vision system is combined with an Adept Robot system to form a complete SMD system. It has been found that the vision guided SMD assembly system is able to provide a satisfactory performance for SND automation.

  • PDF

Robot vision interface (로보트와 Vision System Interface)

  • 김선일;여인택;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.101-104
    • /
    • 1987
  • This paper shows the robot-vision system which consists of robot, vision system, single board computer and IBM-PC. IBM-PC based system has a great flexibility in expansion for a vision system interfacing. Easy human interfacing and great calculation ability are the benefits of this system. It was carried to interface between each component. The calibration between two coordinate systems is studied. The robot language for robot-vision system was written in "C" language. User also can write job program in "C" language in which the robot and vision related functions reside in the library.side in the library.

  • PDF

A Vision System for ]Robot Soccer Game (로봇 축구 대회를 위한 영상 처리 시스템)

  • 고국원;최재호;김창효;김경훈;김주곤;이수호;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.434-438
    • /
    • 1996
  • In this paper we present the multi-agent robot system and the vision system developed for participating in micro robot soccer tournament. The multi-agent robot system consists of micro robot, a vision system, a host computer and a communication module. Micro robot are equipped with two mini DC motors witf encoders and gearboxes, a R/F receiver, a CPU and infrared sensors for obstacle detection. A vision system is used to recognize the position of the ball and opponent robots, position and orientation of our robots. The vision system is composed of a color CCD camera and a vision processing unit(AISI vision computer). The vision algorithm is based on morphological method. And it takes about 90 msec to detect ball and 3-our robots and 3-opponent robots with reasonable accuracy

  • PDF

Design and Application of Vision Box Based on Embedded System (Embedded System 기반 Vision Box 설계와 적용)

  • Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1601-1607
    • /
    • 2009
  • Vision system is an object recognition system analyzing image information captured through camera. Vision system can be applied to various fields, and automobile types recognition is one of them. There have been many research about algorithm of automobile types recognition. But have complex calculation processing. so they need long processing time. In this paper, we designed vision box based on embedded system. and suggested automobile types recognition system using the vision box. As a result of pretesting, this system achieves 100% rate of recognition at the optimal condition. But when condition is changed by lighting and angle, recognition is available but pattern score is lowered. Also, it is observed that the proposed system satisfy the criteria of processing time and recognition rate in industrial field.

Analysis of Optimum Integration on the GNSS and the Vision System (GNSS와 Vision System의 최적 융합 분석)

  • Park, Chi-Ho;Kim, Nam-Hyeok;Park, Kyoung-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.13-18
    • /
    • 2015
  • This paper proposes an optimum vision system analysis and a reliable high-precision positioning system that converges a GNSS and a vision system in order to resolve position error and outdoor shaded areas two disadvantages of GNSS. For location determination of the object, it should receive signal from at least four GNSS. However, in urban areas, exact location determination is difficult due to factors like high buildings, obstacles, and reflected waves. In order to deal with the above problem, a vision system was employed. First, determine an exact position value of a target object in urban areas whose environment is poor for a GNSS. Then, identify such target object by a vision system and its position error is corrected using such target object. A vehicle can identify such target object using a vision system while moving, make location data values, and revise location calculations, thereby resulting in reliable high precision location determination.

A Ubiquitous Vision System based on the Identified Contract Net Protocol (Identified Contract Net 프로토콜 기반의 유비쿼터스 시각시스템)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hagbae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.620-629
    • /
    • 2005
  • In this paper, a new protocol-based approach was proposed for development of a ubiquitous vision system. It is possible to apply the approach by regarding the ubiquitous vision system as a multiagent system. Thus, each vision sensor can be regarded as an agent (vision agent). Each vision agent independently performs exact segmentation for a target by color and motion information, visual tracking for multiple targets in real-time, and location estimation by a simple perspective transform. Matching problem for the identity of a target during handover between vision agents is solved by the Identified Contract Net (ICN) protocol implemented for the protocol-based approach. The protocol-based approach by the ICN protocol is independent of the number of vision agents and moreover the approach doesn't need calibration and overlapped region between vision agents. Therefore, the ICN protocol raises speed, scalability, and modularity of the system. The protocol-based approach was successfully applied for our ubiquitous vision system and operated well through several experiments.

Recognition Performance of Vestibular-Ocular Reflex Based Vision Tracking System for Mobile Robot (이동 로봇을 위한 전정안반사 기반 비젼 추적 시스템의 인식 성능 평가)

  • Park, Jae-Hong;Bhan, Wook;Choi, Tae-Young;Kwon, Hyun-Il;Cho, Dong-Il;Kim, Kwang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.496-504
    • /
    • 2009
  • This paper presents a recognition performance of VOR (Vestibular-Ocular Reflex) based vision tracking system for mobile robot. The VOR is a reflex eye movement which, during head movements, produces an eye movement in the direction opposite to the head movement, thus maintaining the image of interested objects placed on the center of retina. We applied this physiological concept to the vision tracking system for high recognition performance in mobile environments. The proposed method was implemented in a vision tracking system consisting of a motion sensor module and an actuation module with vision sensor. We tested the developed system on an x/y stage and a rate table for linear motion and angular motion, respectively. The experimental results show that the recognition rates of the VOR-based method are three times more than non-VOR conventional vision system, which is mainly due to the fact that VOR-based vision tracking system has the line of sight of vision system to be fixed to the object, eventually reducing the blurring effect of images under the dynamic environment. It suggests that the VOR concept proposed in this paper can be applied efficiently to the vision tracking system for mobile robot.

Development of a Ubiquitous Vision System for Location-awareness of Multiple Targets by a Matching Technique for the Identity of a Target;a New Approach

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.68-73
    • /
    • 2005
  • Various techniques have been proposed for detection and tracking of targets in order to develop a real-world computer vision system, e.g., visual surveillance systems, intelligent transport systems (ITSs), and so forth. Especially, the idea of distributed vision system is required to realize these techniques in a wide-spread area. In this paper, we develop a ubiquitous vision system for location-awareness of multiple targets. Here, each vision sensor that the system is composed of can perform exact segmentation for a target by color and motion information, and visual tracking for multiple targets in real-time. We construct the ubiquitous vision system as the multiagent system by regarding each vision sensor as the agent (the vision agent). Therefore, we solve matching problem for the identity of a target as handover by protocol-based approach. We propose the identified contract net (ICN) protocol for the approach. The ICN protocol not only is independent of the number of vision agents but also doesn't need calibration between vision agents. Therefore, the ICN protocol raises speed, scalability, and modularity of the system. We adapt the ICN protocol in our ubiquitous vision system that we construct in order to make an experiment. Our ubiquitous vision system shows us reliable results and the ICN protocol is successfully operated through several experiments.

  • PDF

INS/Vision Integrated Navigation System Considering Error Characteristics of Landmark-Based Vision Navigation (랜드마크 기반 비전항법의 오차특성을 고려한 INS/비전 통합 항법시스템)

  • Kim, Youngsun;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • The paper investigates the geometric effect of landmarks to the navigation error in the landmark based 3D vision navigation and introduces the INS/Vision integrated navigation system considering its effect. The integrated system uses the vision navigation results taking into account the dilution of precision for landmark geometry. Also, the integrated system helps the vision navigation to consider it. An indirect filter with feedback structure is designed, in which the position and the attitude errors are measurements of the filter. Performance of the integrated system is evaluated through the computer simulations. Simulation results show that the proposed algorithm works well and that better performance can be expected when the error characteristics of vision navigation are considered.

Robot and vision system interface for material handling on conveyor belt system (컨베이어 벨트 시스템에서의 부품 처리를 위한 로보트와 시각 시스템의 접속)

  • 박태형;박충수;이범희;이상욱;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.608-612
    • /
    • 1990
  • The robot system which can handle a stream of randomly positioned parts on a conveyor belt system, is developed. It is composed of a PUMA 560 robot, a conveyor belt system and a vision system. The performance of the overall system is mainly dependent upon the robot and vision system interface technique. A vision algorithm is developed to determine the position, orientation and type of the part. Calibration procedure and the vision-to-robot transformation are also proposed. Experimental results are then presented and discussed.

  • PDF