• Title/Summary/Keyword: Vitellogenesis

Search Result 68, Processing Time 0.028 seconds

Ultrastructural Studies on Oocyte Development and Vitellogenesis associated with Follicle Cells in Female Scapharca subcrenata (Pelecypoda: Arcidae) in Western Korea

  • Kim, Sung Han
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.227-235
    • /
    • 2016
  • Ultrastructural studies on oocyte development and vitellogenesis in oocytes, and the functions of follicle cells during oogenesis and oocyte degeneration were investigated to clarifyb the reproductive mechanism on vitellogenesis of Scapharca subcrenata using electron microscope observations. In this study, vitellogenesis during oogenesis in the oocytes occured by way of autosynthesis and heterosynthesis. Of two processes of vitellogenesis during oogenesis, the process of endogenous autosynthesis involved the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum. However, the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the oolema of the early vitellogenic oocytes before the formation of the vitelline coat. In this study, follicle cells, which attached to the previtellogenic and vitellogenic oocytes, were easily found. In particular, the follicle cells were involved in the development of previtellogenic oocytes by the supply of nutrients, and vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors. Based on observations of follicle cells attached to degenerating oocytes after spawning, follicles of this species are involved in lysosomal induction of oocyte degeneration for the resorption phagosomes (phagolysosomes) in the cytoplasm for nutrient storage, as seen in other bivalves. In this study, the functions of follicle cells can accumulate reserves of lipid granules and glycogen particles for vitellogenesis from degenerating oocytes after spawning.

Ultrastructural Studies on Oocyte Differentiation and Vitellogenesis in the Oocytes of Female Kareius bicoloratus in Western Korea

  • Jun, Je-Cheon;Gang, Hee Woong;Lee, Ki-Young
    • Development and Reproduction
    • /
    • v.22 no.3
    • /
    • pp.213-223
    • /
    • 2018
  • Ultrastructural studies on oocyte differentiation and vitellogenesis in the oocytes of female Kareius bicoloratus were investigated by transmission electron microscopy. The Golgi complex in the cytoplasm is involved in the formation of yolk vesicles that contain yolk carbohydrates in the yolk vesicle of oocytes in the early vitellogenic phase. In this phase, many pinocytotic vesicles (PVs), which are formed by pinocytosis, contain yolk precursors (exogenous substances). These substances are associated with exogenous heterosynthetic vitellogenesis. In yolked oocytes in the late vitellogenic phase, two morphologically different bodies, which formed by modified mitochondria, appear in oocytes. One is a multivesicular body (synthesized by autosynthetic vitellogenesis), and the other is a yolk precursor (an exogenous substance formed by heterosynthetic vitellogenesis). The multivesicular bodies (MVB) are taken into the yolk precursors (YP) and are transformed into primary yolk globules. However, after the YP mix with exogenous PVs near the zona pellucida, they are transformed into primary yolk globules. Vitellogenesis of this species occurs via endogenous autosynthesis and exogenous heterogenesis. Vitellogenesis occurs through endogenous autosynthesis, which involves the combined activity of the Golgi complex, mitochondria and MVB formed by modified mitochondria. However, heterosynthesis involves pinocytotic incorporation of extraovarian precursors (such as vitellogenin in the liver) into the zona pellucida (via granulosa cells and thecal cells) of the yolked oocyte.

Ultrastructural studies of vitellogenesis in oocytes and follicle cells during oogenesis in female Protothaca (Notochione) jedoensis (Bivalvia: Veneridae)

  • Kang, Hee-Woong;Choi, Ki-Ho;Jun, Je-Cheon;Lee, Ki-Young;Park, Kwan-Ha
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • Ultrastructural studies of vitellogenesis in oocytes and follicle cells during oogenesis in female Protothaca (Notochione) jedoensis were investigated by histological and transmission electron microscope observations. In early vitellogenic oocytes, combined activities of the Golgi complex, mitochondria and rough endoplasmic reticulum in the cytoplasm are associated with autosynthetic vitellogenesis. Furthermore, at this time, many coated vesicles at the basal region of the oolemma of the oocyte lead to the formation of vesicles through endocytosis in the cytoplasm. Through the formation of the coated pits on oolemma during vitellogenesis, the uptake of extrafollicular precursors (nutritive materials) occurs in coated vesicles by endocytosis. Therefore, it is assumed that these exogenous materials are involved in heterosynthetic vitellogenesis. During late oogenesis, exogenous yolk precursors (yolk granules), lipid droplets and proteinaceous yolk granules are present in the cytoplasm of late vitellogenic oocytes. In mature oocytes, small yolk granules appear intermingled and form large mature yolk granules. Thus, two processes of vitellogenesis occur in oocytes by way of endogenous autosynthesis and exogenous heterosynthesis. The follicle cells attached to the oocytes appear to play an integral role in vitellogenesis in this study.

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly (노랑초파리 난황형성과정 제어 신경 메커니즘)

  • Kim, Young-Joon;Zhang, Chen
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2022
  • Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.

Oogenesis and Oocyte Degeneration in Coecella chinensis (Bivalvia: Mesodesmatidae)

  • Kim, Sung Han;Chung, Ee-Yung
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.333-342
    • /
    • 2014
  • Ultrastructural studies of oogenesis in oocytes, oocyte degeneration associated with the follicle cells in female Coecella chinensis were investigated for clams collected from Namhae, Geongsangnam-do, Korea. In this study, vitellogenesis during oogenesis in the oocytes occured by way of endogenous autosynthesis and exogenous heterosynthesis. Of two processes of vitellogenesis during oogenesis, the process of endogenous autosynthesis involved the combined activity of the Golgi complex, mitochondria and rough endoplasmic reticulum. whereas the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors at the basal region of the oolema of the early vitellogenic oocytes prior to the formation of the vitelline coat. It is assumed that the follicle cells were involved in the development of previtellogenic and early vitellogenic oocytes and appear to play an integral role in vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors, and also they were involved in oocyte degeneration by assimilating products originating from the degenerated oocytes, thus allowed the transfer of york precursors needed for vitellogenesis (through phagocytosis by phagolysosomes after spawning). Follicle cells presumably have a lysosomal system for breakdown products of oocyte degeneration. and for reabsorption of various phagosomes (phagolysosomes) in the cytoplasm for nutrient storage during the period of oocyte degeneration.

Ultrastructural Studies on Oocyte Development and Vitellogenesis During Oogenesis in Female Boleophthalmus pectinirostris

  • Chung, Ee-Yung;Choi, Ki-Ho;Jun, Je-Cheon;Choi, Moon-Sul;Lee, Ki-Young
    • Animal cells and systems
    • /
    • v.13 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • For the study of the reproductive mechanism associated with the process of vitellogenesis, oocyte development and vitellogenesis during oogenesis in female Boleophthalmus pectinirostris were investigated by electron microscopic observations. The ovary consists of a pair of saccular structures with many ovarian lobules. In the early vitellogenic oocyte, the Golgi complex plays an important role leading to the formation of yolk vesicles containing carbohydrate yolks. At this time many pinocytotic vesicles containing yolk precursors are observed in the cytoplasm near the region of initial formation of the zona radiata. In the late vitellogenic oocytes, the multivesicular bodies, which are formed by modified mitochondria, are involved in the formation of the primary yolk granules. Precursors of yolk granules and multivesicular bodies develop to primary yolk globules with participation of pinocytotic vesicles. After primary yolk globules mix with each other, they develop into secondary and tertiary yolk globules. Based on these findings, vitellogenesis of B. pectinirostris occurs by way of the processes of endogenous autosynthesis and exogenous heterosynthesis. The process of autosynthesis involves the combined activity of the Golgi complex, mitochondria, and multivesicular bodies. However, the process of heterosynthesis involves pinocytotic incorporation of extraovarian precursors into the zona radiata of vitellogenic oocytes by way of the thecal cell layers and granulosa cells.

Ultrastructural Studies of Oocyte Differentiation and Vitellogenesis in female Phacosoma japonicus (Bivalvia: Veneridae) in Western Korea (한국 서해산 암컷 떡조개, Phacosoma japonicus (Bivalvia: Veneridae) 의 난모세포 발달과 난황형성과정의 미세구조적 연구)

  • Jun, Je-Cheon;Kim, Sung-Han
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Ultrastructural studies of oocyte development and vitellogenesis associated with the follicle cells in female Phacosoma japonicus were investigated by electron microscope observations. Vitelloogenesis in the oocytes occured by way of endogenous autosynthesis and exogenous heterosynthesis: vitellogenesis occurred through a process of endogenous autosynthesis, which involves a combined activity of the Golgi complex, rough endoplasmic reticulum, and mitochondria. However, the process of exogenous heterosynthesis involved endocytotic incorporation of extraovarian precursors into the basal region of the early vitellogenic oocytes. In this study, follicle cells, which attached to the previtellogenic and vitellogenic oocytes, were easily found. In particular, the follicle cells were involved in the development of previtellogenic oocytes by the supply of nutrients, and vitellogenesis in the early and late vitellogenic oocytes by endocytosis of yolk precursors. The functions of follicle cells, which attached to mature oocytes, accumulate reserves of lipid granules and glycogen particles for vitellogesis in the cytoplasm of the follicle cells.

Changes in Sex Steroid Hormones and Ovarian Development during Artificial Maturation of Female Eel, Anguilla japonica

  • Kim, Dae-Jung;Bae, Jun-Young;Kim, Eung-Oh
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2007
  • The present study demonstrates the changes in body weight (BW) and plasma sex steroid hormone profiles during artificial maturation induced by human chorionic gonadotropin (HCG) or salmon pituitary extract (SPE) injections in cultured eel, Anguilla japonica, kept in seawater for 3 months. In the weekly SPE-injected female group, BW was relatively stable during vitellogenesis. Following induction of vitellogenesis, females exhibited a rapid increase of BW, and the oocytes were observed to be in the migratory nucleus stage at the end of the experiment. Plasma testosterone (T) and $estradiol-17{\beta}$ ($E_2$) levels increased slightly during vitellogenesis and peaked at an average of 5.82 ng/mL and 4.76 ng/mL, respectively, at the end of the experiment. In the weekly control and HCG-injected female groups, BW slowly decreased during the experimental period, and the oocytes of the two groups were observed to be at the primary yolk globule stage. In the weekly HCG-injected female group, plasma T and $E_2$ levels increased slightly during vitellogenesis and decreased afterward. In the control female group, however, plasma T and $E_2$ levels were not altered during the experimental period. Furthermore, plasma $17{\alpha},20{\beta}-dihydroxy-4-pregnen-3-one$ (DHP) was not detected in all experimental groups. Fertility and hatching rates of SPE-injected females were significantly higher in those that ovulated 15 h after DHP injection than 18 h. These results indicate that long rearing in seawater increases responsiveness to SPE in ovarian maturation of the Japanese eel, resulting in shortened period from completion of vitellogenesis by sex steroid hormone production.

Oogenesis, Oocyte Degeneration and Sexual Maturation in Female Cyclina sinensis (Gmelin, 1971) (Bivalvia: Veneridae) in Korea

  • Chung, Ee-Yung;Koh, Chul-Hwan;Park, Gab-Man
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.191-198
    • /
    • 2007
  • The ultrastructure of germ cells and follicle cells during oogenesis, oocyte degeneration, reproductive cycle, and first sexual maturity in female Cyclina sinensis were investigated for clams collected from Simpo, Jeollabuk-do, Korea, by cytological and histological observations. Vitellogenesis occured by way of endogeous autosynthesis and exogenous heterosynthesis: vitellogensis occurred through a process of autosynthesis, which involves a combined activities of the Golgi complex, mitochondria, and rough endoplasmic reticulum. The process of heterosynthesis involved endocytotic incorporation of extraovarian precursors into the basal region of the early vitellogenic oocytes prior to the formation of vitelline envelope. The follicle cells appear to play an integral role in vitellogenesis and oocyte degeneration, functioning in phagocytosis and digestion of products originating from the degenerated oocytes: these functions can permit the transfer of yolk precursors needed for vitellogenesis. Follicle cells might have a lysosomal system for breakdown and might also resorb phagosomes in the cytoplasm for nutrient storage during oocyte degeneration.

Ultrastructural Studies of Vitellogenesis According to Germ Cell Development, and Mating Period and Spawning Activity in Female Rapa Whelk, Rapana venosa (Gastropoda: Muricidae) in the Brackish Water Area of Seomjin River, Korea (한국 섬진강 기수역 암컷 피뿔고둥 Rapana venosa (복족류 : 뿔소라과)의 생식세포 발달에 따른 난황형성과정의 미세구조적 연구 및 교미 시기와 산란 활성)

  • SON, Pal-Won;LEE, Il-Ho;KIM, Sung-Han
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.4
    • /
    • pp.1031-1040
    • /
    • 2015
  • Ultrstructural studies of germ cell differentiation and vitellogenesis in the oocytes of the female Rapana venosa in the brackish water area of Seomjin River were investigated by transmission electron microscope observations. In the early vitellogenic oocytes, the Golgi complex and mitochondria were involved in the formation of glycogen particle, lipid droplets, and yolk granules. In the late vitellogenic oocytes, the rough endoplasmic reticulum and multivesicular bodies were involved in the formation of proteid yolk granules in the cytoplasm. However, heterosynthetic vitellogenesis in this species were not observed in vitellogenic oocytes during oogenesis. A mature yolk granule was composed of three components: crystalline core, electron lucent cortex and the limiting membrane. As shown in some large gastropods, vitellogenesis in R. venosa occurred by way of endogenous autosynthesis without heterosythetic vitellogenesis (exogeneous endocytosis), which are found in the oocytes in bivalves. The mating period and spawning activity were related with the increases of seawater temperatures and salinities.