• Title/Summary/Keyword: Void Distributions in a Rod Bundle

Search Result 2, Processing Time 0.017 seconds

NUPEC BFBT SUBCHANNEL VOID DISTRIBUTION ANALYSIS USING THE MATRA AND MARS CODES

  • Hwang, Dae-Hyun;Jeong, Jae-Jun;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.295-306
    • /
    • 2009
  • The subchannel grade void distributions in the NUPEC (Nuclear Power Engineering Corporation) BFBT (BWR Full-Size Fine-Mesh Bundle Tests) facility were evaluated with the subchannel analysis code MATRA and the system code MARS. Fifteen test series from five different test bundles were selected for an analysis of the steady-state subchannel void distributions. Two transient cases, a turbine trip without a bypass as a typical power transient and a re-circulation pump trip as a flow transient, were also chosen for this analysis. It was found that the steady-state void distributions calculated by both the MATRA and MARS codes coincided well with the measured data in the range of thermodynamic qualities from 5% to 25%. The results of the transient calculations were also similar and were highly feasible. However, the computational aspects of the two codes were clearly different.

Experimental Investigation on Air-Distribution in a Water-Flowing through a G1-Rod Bundle with Helical Spacers

  • Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 1978
  • The object of this study was to obtain data on air-distributions in two-phase up flow in vertical rod-bundle test-section. The test-section in this study was a hexagonal shaped 61-rod bundle where each rod was wrapped with helical spacers. The variables were flow rates of air and water and air inlet positions. Experimental data were obtained at the outlet of the test-section. The experiments were performed in two parts. Firstly, data were taken at increasing flow rates of air keeping water flow rates constant, and secondly, at simultaneous increase of air and water flow rates. At each flow condition, air supply position could be changed to 4 different positions. Data obtained by electrical void-needle technique were analyed and are presented here in graphical forms for comparison. The results of this study demonstrate qualitatively that air-distribution tends to be more uniform as water flow rates are increased. The air supply positions have noticeable effects on the pattern of air-distribution.

  • PDF