• Title/Summary/Keyword: Voltage sag assessment

Search Result 32, Processing Time 0.038 seconds

Stochastic Estimation of Voltage Sags Based on Voltage Monitoring (전압 모니터링에 기반한 순간전압강하 확률적 추계 방법)

  • Son, Jeongdae;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1271-1277
    • /
    • 2018
  • This paper deals with a voltage sag assessment based on a voltage monitoring program. The voltage sag performance at a specific site can be evaluated by analyzing voltage monitoring data recorded for a long time period. Although an assessment based on voltage monitoring is an effective way to understand voltage sag performance at a measurement site, the statistical confidence of voltage sag frequency estimation heavily depends on the length of monitoring period and the number of recorded events. Short monitoring period and insufficient recorded data can not provide a reliable assessment result. This paper proposes a compensation assessment method by combining a computer simulation approach for in case that monitoring period and data are not enough for a valid assessment.

Voltage Sag Assessment Considering the Characteristics of Wind Power (풍력 발전 특성을 고려한 순간전압강하 평가)

  • Song, Young-Won;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1571-1577
    • /
    • 2012
  • This paper presents a method for assessing the voltage sag performance of power system involving wind power generation. Wind power generation is considered as one of the most desirable renewable energy sources. However, wind power generation have uncertain energy output and it is difficult to control the output. The existing methods of voltage sag assessment are not reflected the characteristics of wind power generation. Therefore, in order to more accurately assess the voltage sag performance, the probability of wind power operation is evaluated. In this paper, the probability is determined by combining the wind speed model with the output curve of wind turbine. The probability of wind power operation is reflected as a parameter in voltage sag assessment. The proposed method can provide more accurate results of voltage sag assessment for the case involving the wind power generation.

A Study on Financial Loss Assessment of Voltage Sags (순간전압강하 경제적 손실 평가 연구)

  • Park, Jomg-Il;Song, Young-Won;Park, Chang-Hyun;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.324-325
    • /
    • 2011
  • This paper addresses the assessment of voltage sag costs based on the stochastic prediction of voltage sags. When voltage sags below a certain voltage threshold occur at sensitive industrial process, the industrial customer will experience financial damage. In order to mitigate voltage sag costs and devise efficient solutions to mitigate damage, a study on the financial loss assessment of voltage sags is basically needed. In order to assess the voltage sag costs, the expected sag frequency at a sensitive load point should be calculated by using the concept of the area of vulnerability and historical fault statistics. Then, financial loss due to voltage sags can be obtained by multiplying the expected sag frequency by the cost per sag event.

  • PDF

Countermeasure of Voltage Sag in Radial Power Distribution System using Load Transfer Switching (부하 절환 스위칭을 이용한 방사상 배전계통에서의 순간전압강하 대책)

  • Yun, Sang-Yun;Oh, Jung-Hwan;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.558-565
    • /
    • 2000
  • In this paper, we propose a method for mitigating for mitigating the effect of voltage of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequenced of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. The search of weakness point is carried out using the risk assessment model of voltage sag and Monte Carlo simulation method and the historical reliability data in Korea Electric Power Corporation (KEPCO) are also used. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF

A Study on the method to determine an Area of Severity for Voltage Sag Assessment (순간전압강하 평가를 위한 Area of Severity 구현에 관한 연구)

  • Lee, Kyebyung;Park, Chang-Hyun;Bae, Jong-Il;Lee, Hansang;Cho, Soohwan;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.323-324
    • /
    • 2015
  • Voltage sag phenomenon is known as one of the important problems that brought huge economic losses in the modern industry. The voltage sag assessment is to predict an annual expected sag frequency (ESF) at concerned consumers caused by fault in the system. An area of severity (AOS) assessment is defined as a set of the fault positions that can result in the voltage sag bigger than certain level for multi-concerned buses simultaneously. This paper introduces how to determine a method for evaluating the voltage sag performance based on the AOS assessment.

  • PDF

Development of a Voltage Sag Assessment Program Considering Generator Scheduling and Voltage Tolerance (발전기 스케줄링과 부하 전압민감도를 고려한 순간전압강하 평가 프로그램 개발)

  • Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.92-100
    • /
    • 2009
  • This paper presents a voltage sag assessment program. The program provides various functions for stochastic assessment of voltage sags such as short-circuit analysis, the determination of the area of vulnerability and the calculation of expected sag frequency(ESF). Effective data visualization functions based on computer graphics and animation were also implemented in the developed program. In this paper, the concept of voltage sag assessment and the assessment method considering generator scheduling and time-varying fault rates are presented. The influence of generator scheduling and time-varying fault rates on voltage sag prediction is also described by performing case studies using the developed program.

Method to Select Optimal Device for Mitigating Voltage Sag Based on Voltage Sag Assessment (순간전압강하 평가에 기반한 최적 보상기기 선정 방법)

  • Lee, Kyebyung;Han, Jong-Hoon;Jang, Gilsoo;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • This paper presents a method to select optimal device for mitigating voltage sags. The method is based on economic evaluation and voltage sag assessment involving sag duration as well as magnitude. The economic evaluation is performed by using the operation cost and economic benefit of the mitigation devices. The optimal device can be determined from the values of NPV (net present value) which is widely accepted in cost-benefit analysis. The proposed method can help sensitive customers to select optimal mitigation device. In this paper, the case study considering two sensitive customers was performed by using the proposed method.

Calculation of the Area of Severity for Voltage Sag Assessment (순간전압강하 평가를 위한 가혹지역의 계산)

  • Park, Chang-Hyun;Hong, Jun-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1034-1040
    • /
    • 2010
  • This paper presents a calculation method of the area of severity for the stochastic assessment of voltage sags. In general, the annual expected numbers of voltage sags at an individual load point can be estimated stochastically. However, in order to assess the system voltage sag performance considering many sensitive load points together, it is necessary to determine and analysis the area of severity for the load points. The area of severity to voltage sags is the network region where the fault occurrences will simultaneously lead to voltage sags at different load points. In this paper, the concept of the voltage sag assessment and the calculation method of the area of severity are addressed. The analysis of the area of severity is performed on the IEEE 30-bus test system by using the proposed method. The method is useful for the stochastic assesment of voltage sags and the establishment of systematic plans for voltage sag mitigation.

Stochastic Method to Assess Voltage Sag Performance Considering Sag Duration in Large Power System (대규모 계통에서의 순간전압강하 지속시간을 고려한 추계적 평가 방법)

  • Lee, Myeong-Cheol;Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.85-92
    • /
    • 2016
  • The paper presents a method to assess system voltage sag performance considering sag durations as well as magnitudes. In general, voltage sag assessment for large power systems is performed only considering sag magnitudes at sensitive load points. However some equipment can be affected by certain sag durations. The duration of the voltage sag is depend on the time of fault current flow in the system. Therefore, the duration can be determined by analyzing the operating characteristic of the protection system. In this paper, an effective method to evaluate sag durations regarding the characteristics and failure rates of the protection system is described. The proposed method can be used to assess the long-term performance of the voltage sags in large power system.

A study on the Placement of Energy Storage System by using Area of Severity Assessment (Area of Severity 평가를 이용한 에너지 저장장치의 위치 결정에 관한 연구)

  • Lee, Kyebyung;Park, Chang-Hyun;Bae, Jong-Il;Lee, Hansang;Cho, Soohwan;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.321-322
    • /
    • 2015
  • An area of severity (AOS) assessment is defined as a set of the fault positions that can result in the voltage sag bigger than certain level for sensitive buses simultaneously. Using the AOS assessment, the location of devices for compensating voltage sag can be determined as the site expected to less voltage sag at the sensitive bus. The energy storage system based on the control strategy emulating the traditional synchronous generator can contribute the fault current with fast response. Therefor are of venerability (AOV) can be reduced. The energy storage system installed by the AOS assessment has function which can experience relatively less voltage sag in addition to the conventional role of energy storage.

  • PDF